IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v309y2022i2d10.1007_s10479-020-03826-y.html
   My bibliography  Save this article

A minimax regret model for the leader–follower facility location problem

Author

Listed:
  • Xiang Li

    (Beijing University of Chemical Technology)

  • Tianyu Zhang

    (Beijing University of Chemical Technology)

  • Liang Wang

    (China Europe International Business School)

  • Hongguang Ma

    (Beijing University of Chemical Technology)

  • Xiande Zhao

    (China Europe International Business School)

Abstract

The leader–follower facility location problem consists of a leader and a follower who are competitors that locate new facilities sequentially. Traditional studies have generally assumed that the leader has partial or full advance information of the follower’s response when making a decision. However, this assumption might be invalid or impracticable in practice. In this paper, we consider that the leader needs to locate a predetermined number of new facilities without knowing anything about the follower’s response. By separating the scenarios in which the follower responds with different numbers of new facilities, a minimax regret model is proposed for the leader to minimise its maximum possible loss. Based on the structural characteristics of the proposed model, a set of solving procedures is provided that transforms the follower’s nonlinear (fraction) programming model into a linear model. In the numerical experiments, the proposed model is compared with two other location models, a deterministic model and a risk model, and the efficiency of the linearisation in decreasing the computation time is verified. The results show that the proposed model is more applicable to the leader when there is no information about the number or probability distribution of the follower’s new facilities.

Suggested Citation

  • Xiang Li & Tianyu Zhang & Liang Wang & Hongguang Ma & Xiande Zhao, 2022. "A minimax regret model for the leader–follower facility location problem," Annals of Operations Research, Springer, vol. 309(2), pages 861-882, February.
  • Handle: RePEc:spr:annopr:v:309:y:2022:i:2:d:10.1007_s10479-020-03826-y
    DOI: 10.1007/s10479-020-03826-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-020-03826-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-020-03826-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hakimi, S. Louis, 1983. "On locating new facilities in a competitive environment," European Journal of Operational Research, Elsevier, vol. 12(1), pages 29-35, January.
    2. Saidani, Nasreddine & Chu, Feng & Chen, Haoxun, 2012. "Competitive facility location and design with reactions of competitors already in the market," European Journal of Operational Research, Elsevier, vol. 219(1), pages 9-17.
    3. Sedghi, Nafiseh & Shavandi, Hassan & Abouee-Mehrizi, Hossein, 2017. "Joint pricing and location decisions in a heterogeneous market," European Journal of Operational Research, Elsevier, vol. 261(1), pages 234-246.
    4. Aboolian, Robert & Berman, Oded & Krass, Dmitry, 2007. "Competitive facility location and design problem," European Journal of Operational Research, Elsevier, vol. 182(1), pages 40-62, October.
    5. Wang, Xin & Ouyang, Yanfeng, 2013. "A continuum approximation approach to competitive facility location design under facility disruption risks," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 90-103.
    6. Kathrin Fischer, 2002. "Sequential Discrete p-Facility Models for Competitive Location Planning," Annals of Operations Research, Springer, vol. 111(1), pages 253-270, March.
    7. Kress, Dominik & Pesch, Erwin, 2012. "Sequential competitive location on networks," European Journal of Operational Research, Elsevier, vol. 217(3), pages 483-499.
    8. David L. Huff, 1966. "A Programmed Solution for Approximating an Optimum Retail Location," Land Economics, University of Wisconsin Press, vol. 42(3), pages 293-303.
    9. Farahani, Reza Zanjirani & Fallah, Samira & Ruiz, Rubén & Hosseini, Sara & Asgari, Nasrin, 2019. "OR models in urban service facility location: A critical review of applications and future developments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 1-27.
    10. Gentile, José & Alves Pessoa, Artur & Poss, Michael & Costa Roboredo, Marcos, 2018. "Integer programming formulations for three sequential discrete competitive location problems with foresight," European Journal of Operational Research, Elsevier, vol. 265(3), pages 872-881.
    11. Plastria, Frank, 2001. "Static competitive facility location: An overview of optimisation approaches," European Journal of Operational Research, Elsevier, vol. 129(3), pages 461-470, March.
    12. Zhang, Yue & Atkins, Derek, 2019. "Medical facility network design: User-choice and system-optimal models," European Journal of Operational Research, Elsevier, vol. 273(1), pages 305-319.
    13. Kung, Ling-Chieh & Liao, Wei-Hung, 2018. "An approximation algorithm for a competitive facility location problem with network effects," European Journal of Operational Research, Elsevier, vol. 267(1), pages 176-186.
    14. Lado-Sestayo, Rubén & Fernández-Castro, Ángel Santiago, 2019. "The impact of tourist destination on hotel efficiency: A data envelopment analysis approach," European Journal of Operational Research, Elsevier, vol. 272(2), pages 674-686.
    15. James T. Moore & Jonathan F. Bard, 1990. "The Mixed Integer Linear Bilevel Programming Problem," Operations Research, INFORMS, vol. 38(5), pages 911-921, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tammy Drezner & Zvi Drezner & Dawit Zerom, 2020. "Facility Dependent Distance Decay in Competitive Location," Networks and Spatial Economics, Springer, vol. 20(4), pages 915-934, December.
    2. Fernández, José & Hendrix, Eligius M.T., 2013. "Recent insights in Huff-like competitive facility location and design," European Journal of Operational Research, Elsevier, vol. 227(3), pages 581-584.
    3. Drezner, Zvi & Eiselt, H.A., 2024. "Competitive location models: A review," European Journal of Operational Research, Elsevier, vol. 316(1), pages 5-18.
    4. Küçükaydin, Hande & Aras, Necati & Kuban AltInel, I., 2011. "Competitive facility location problem with attractiveness adjustment of the follower: A bilevel programming model and its solution," European Journal of Operational Research, Elsevier, vol. 208(3), pages 206-220, February.
    5. Eligius M. T. Hendrix, 2016. "On competition in a Stackelberg location-design model with deterministic supplier choice," Annals of Operations Research, Springer, vol. 246(1), pages 19-30, November.
    6. Gentile, José & Alves Pessoa, Artur & Poss, Michael & Costa Roboredo, Marcos, 2018. "Integer programming formulations for three sequential discrete competitive location problems with foresight," European Journal of Operational Research, Elsevier, vol. 265(3), pages 872-881.
    7. Godinho, Pedro & Dias, Joana, 2013. "Two-player simultaneous location game: Preferential rights and overbidding," European Journal of Operational Research, Elsevier, vol. 229(3), pages 663-672.
    8. Haase, Knut & Hoppe, Mirko, 2008. "Standortplanung unter Wettbewerb - Teil 1: Grundlagen," Discussion Papers 2/2008, Technische Universität Dresden, "Friedrich List" Faculty of Transport and Traffic Sciences, Institute of Transport and Economics.
    9. Eiselt, H.A. & Marianov, Vladimir, 2020. "Maximizing political vote in multiple districts," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    10. Tolga H. Seyhan & Lawrence V. Snyder & Ying Zhang, 2018. "A New Heuristic Formulation for a Competitive Maximal Covering Location Problem," Transportation Science, INFORMS, vol. 52(5), pages 1156-1173, October.
    11. Martha-Selene Casas-Ramírez & José-Fernando Camacho-Vallejo & Juan A. Díaz & Dolores E. Luna, 2020. "A bi-level maximal covering location problem," Operational Research, Springer, vol. 20(2), pages 827-855, June.
    12. Tammy Drezner & Zvi Drezner & Atsuo Suzuki, 2019. "A cover based competitive facility location model with continuous demand," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 565-581, October.
    13. Pelegrín, Blas & Fernández, Pascual & Dolores García Pérez, María & Cano Hernández, Saúl, 2012. "On the location of new facilities for chain expansion under delivered pricing," Omega, Elsevier, vol. 40(2), pages 149-158, April.
    14. Zhang, Ying & Snyder, Lawrence V. & Ralphs, Ted K. & Xue, Zhaojie, 2016. "The competitive facility location problem under disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 453-473.
    15. Zhang, Yue, 2015. "Designing a retail store network with strategic pricing in a competitive environment," International Journal of Production Economics, Elsevier, vol. 159(C), pages 265-273.
    16. Florensa, Carlos & Garcia-Herreros, Pablo & Misra, Pratik & Arslan, Erdem & Mehta, Sanjay & Grossmann, Ignacio E., 2017. "Capacity planning with competitive decision-makers: Trilevel MILP formulation, degeneracy, and solution approaches," European Journal of Operational Research, Elsevier, vol. 262(2), pages 449-463.
    17. Blas Pelegrín & Rafael Suárez-Vega & Saúl Cano, 2012. "Isodistant points in competitive network facility location," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 639-660, October.
    18. Abdullah Dasci & Gilbert Laporte, 2005. "A Continuous Model for Multistore Competitive Location," Operations Research, INFORMS, vol. 53(2), pages 263-280, April.
    19. Vladimir Marianov & H. A. Eiselt, 2016. "On agglomeration in competitive location models," Annals of Operations Research, Springer, vol. 246(1), pages 31-55, November.
    20. Farahani, Reza Zanjirani & Rezapour, Shabnam & Drezner, Tammy & Fallah, Samira, 2014. "Competitive supply chain network design: An overview of classifications, models, solution techniques and applications," Omega, Elsevier, vol. 45(C), pages 92-118.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:309:y:2022:i:2:d:10.1007_s10479-020-03826-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.