IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v281y2020i3p575-587.html
   My bibliography  Save this article

Development of a Bayesian Belief Network-based DSS for predicting and understanding freshmen student attrition

Author

Listed:
  • Delen, Dursun
  • Topuz, Kazim
  • Eryarsoy, Enes

Abstract

Student attrition – the departure from an institution of higher learning prior to the achievement of a degree or earning due educational credentials – is an administratively important, scientifically interesting and yet practically challenging problem for decision makers and researchers. This study aims to find the prominent variables and their conditional dependencies/interrelations that affect student attrition in college settings. Specifically, using a large and feature-rich dataset, proposed methodology successfully captures the probabilistic interactions between attrition (the dependent variable) and related factors (the independent variables) to reveal the underlying, potentially complex/non-linear relationships. The proposed methodology successfully predicts the individual students' attrition risk through a Bayesian Belief Network-driven probabilistic model. The findings suggest that the proposed probabilistic graphical/network method is capable of predicting student attrition with 84% in AUC – Area Under the Receiver Operating Characteristics Curve. Using a 2-by-2 investigational design framework, this body of research also compares the impact and contribution of data balancing and feature selection to the resultant prediction models. The results show that (1) the imbalanced dataset produces similar predictive results in detecting the at-risk students, and (2) the feature selection, which is the process of identifying and eliminating unnecessary/unimportant predictors, results in simpler, more understandable, interpretable, and actionable results without compromising on the accuracy of the prediction task.

Suggested Citation

  • Delen, Dursun & Topuz, Kazim & Eryarsoy, Enes, 2020. "Development of a Bayesian Belief Network-based DSS for predicting and understanding freshmen student attrition," European Journal of Operational Research, Elsevier, vol. 281(3), pages 575-587.
  • Handle: RePEc:eee:ejores:v:281:y:2020:i:3:p:575-587
    DOI: 10.1016/j.ejor.2019.03.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719302954
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.03.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rong Chen & Stephen L. DesJardins, 2010. "Investigating the Impact of Financial Aid on Student Dropout Risks: Racial and Ethnic Differences," The Journal of Higher Education, Taylor & Francis Journals, vol. 81(2), pages 179-208, March.
    2. Chris M. Golde, 2005. "The Role of the Department and Discipline in Doctoral Student Attrition: Lessons from Four Departments," The Journal of Higher Education, Taylor & Francis Journals, vol. 76(6), pages 669-700, November.
    3. Dachuan Shih & Seoung Kim & Victoria Chen & Jay Rosenberger & Venkata Pilla, 2014. "Efficient computer experiment-based optimization through variable selection," Annals of Operations Research, Springer, vol. 216(1), pages 287-305, May.
    4. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    5. Vincent Tinto, 1997. "Classrooms as Communities," The Journal of Higher Education, Taylor & Francis Journals, vol. 68(6), pages 599-623, November.
    6. David L. Olson & Dursun Delen, 2008. "Advanced Data Mining Techniques," Springer Books, Springer, number 978-3-540-76917-0, June.
    7. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    8. Sevim, Cuneyt & Oztekin, Asil & Bali, Ozkan & Gumus, Serkan & Guresen, Erkam, 2014. "Developing an early warning system to predict currency crises," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1095-1104.
    9. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Zapata-Medina & Albeiro Espinosa-Bedoya & Jovani Alberto Jiménez-Builes, 2024. "Improving the Automatic Detection of Dropout Risk in Middle and High School Students: A Comparative Study of Feature Selection Techniques," Mathematics, MDPI, vol. 12(12), pages 1-20, June.
    2. Wang, Qiang & Zhang, Wen & Li, Jian & Ma, Zhenzhong, 2023. "Complements or confounders? A study of effects of target and non-target features on online fraudulent reviewer detection," Journal of Business Research, Elsevier, vol. 167(C).
    3. Ahmed, Abdulaziz & Topuz, Kazim & Moqbel, Murad & Abdulrashid, Ismail, 2024. "What makes accidents severe! explainable analytics framework with parameter optimization," European Journal of Operational Research, Elsevier, vol. 317(2), pages 425-436.
    4. Kazim Topuz & Behrooz Davazdahemami & Dursun Delen, 2024. "A Bayesian belief network-based analytics methodology for early-stage risk detection of novel diseases," Annals of Operations Research, Springer, vol. 341(1), pages 673-697, October.
    5. Thuy, Arthur & Benoit, Dries F., 2024. "Explainability through uncertainty: Trustworthy decision-making with neural networks," European Journal of Operational Research, Elsevier, vol. 317(2), pages 330-340.
    6. Kazim Topuz & Timothy L. Urban & Robert A. Russell & Mehmet B. Yildirim, 2024. "Decision support system for appointment scheduling and overbooking under patient no-show behavior," Annals of Operations Research, Springer, vol. 342(1), pages 845-873, November.
    7. Qazi, Abroon, 2023. "Exploring Global Competitiveness Index 4.0 through the lens of country risk," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    8. Vafadarnikjoo, Amin & Chalvatzis, Konstantinos & Botelho, Tiago & Bamford, David, 2023. "A stratified decision-making model for long-term planning: Application in flood risk management in Scotland," Omega, Elsevier, vol. 116(C).
    9. Benoit, Dries F. & Tsang, Wai Kit & Coussement, Kristof & Raes, Annelies, 2024. "High-stake student drop-out prediction using hidden Markov models in fully asynchronous subscription-based MOOCs," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    10. Zhang, Mingming & Zhou, Simei & Wang, Qunwei & Liu, Liyun & Zhou, Dequn, 2023. "Will the carbon neutrality target impact China's energy security? A dynamic Bayesian network model," Energy Economics, Elsevier, vol. 125(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazim Topuz & Hasmet Uner & Asil Oztekin & Mehmet Bayram Yildirim, 2018. "Predicting pediatric clinic no-shows: a decision analytic framework using elastic net and Bayesian belief network," Annals of Operations Research, Springer, vol. 263(1), pages 479-499, April.
    2. Mostafa Rezaei & Ivor Cribben & Michele Samorani, 2021. "A clustering-based feature selection method for automatically generated relational attributes," Annals of Operations Research, Springer, vol. 303(1), pages 233-263, August.
    3. Cui, Hailong & Rajagopalan, Sampath & Ward, Amy R., 2020. "Predicting product return volume using machine learning methods," European Journal of Operational Research, Elsevier, vol. 281(3), pages 612-627.
    4. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    5. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    6. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    7. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    8. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    9. Immanuel Bayer & Philip Groth & Sebastian Schneckener, 2013. "Prediction Errors in Learning Drug Response from Gene Expression Data – Influence of Labeling, Sample Size, and Machine Learning Algorithm," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-13, July.
    10. Gustavo A. Alonso-Silverio & Víctor Francisco-García & Iris P. Guzmán-Guzmán & Elías Ventura-Molina & Antonio Alarcón-Paredes, 2021. "Toward Non-Invasive Estimation of Blood Glucose Concentration: A Comparative Performance," Mathematics, MDPI, vol. 9(20), pages 1-13, October.
    11. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    12. Karim Barigou & Stéphane Loisel & Yahia Salhi, 2020. "Parsimonious Predictive Mortality Modeling by Regularization and Cross-Validation with and without Covid-Type Effect," Risks, MDPI, vol. 9(1), pages 1-18, December.
    13. Gurgul Henryk & Machno Artur, 2017. "Trade Pattern on Warsaw Stock Exchange and Prediction of Number of Trades," Statistics in Transition New Series, Statistics Poland, vol. 18(1), pages 91-114, March.
    14. Michael Funke & Kadri Männasoo & Helery Tasane, 2023. "Regional Economic Impacts of the Øresund Cross-Border Fixed Link: Cui Bono?," CESifo Working Paper Series 10557, CESifo.
    15. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Post-Print halshs-00917797, HAL.
    16. Zichen Zhang & Ye Eun Bae & Jonathan R. Bradley & Lang Wu & Chong Wu, 2022. "SUMMIT: An integrative approach for better transcriptomic data imputation improves causal gene identification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    18. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    19. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.
    20. Capanu, Marinela & Giurcanu, Mihai & Begg, Colin B. & Gönen, Mithat, 2023. "Subsampling based variable selection for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:281:y:2020:i:3:p:575-587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.