IDEAS home Printed from https://ideas.repec.org/p/mod/depeco/0168.html
   My bibliography  Save this paper

Tertiary education decisions of immigrants and non-immigrants in Italy: an empirical approach

Author

Listed:
  • Michele Lalla
  • Patrizio Frederic

Abstract

Decisions regarding tertiary schooling are important for young people as it affects future opportunities for employment and social mobility. Tertiary schooling also plays a role in the social integration of immigrants. To determine differences in the choices of young Italian natives and immigrants concerning education, two datasets for 2009 were used: European Union Statistics on Income and Living Conditions (EU-SILC) and the Italian Survey on Income and Living Conditions of Families with Immigrants in Italy (IT-SILCFI). Analysing a sub-sample of young Italians and immigrants, between 18 and 29 years of age, the association of both individual and family explanatory variables in the choice of secondary schooling (yes/no) was assessed using logistic models. The results show that young immigrants tend to interrupt their schooling earlier than their Italian peers. However, differences disappear when family background and parental characteristics are taken into account.

Suggested Citation

  • Michele Lalla & Patrizio Frederic, 2020. "Tertiary education decisions of immigrants and non-immigrants in Italy: an empirical approach," Department of Economics 0168, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
  • Handle: RePEc:mod:depeco:0168
    as

    Download full text from publisher

    File URL: http://155.185.68.2/wpdemb/0168.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eva K. Andersson & Torkild Hovde Lyngstad & Bart Sleutjes, 2018. "Comparing Patterns of Segregation in North-Western Europe: A Multiscalar Approach," European Journal of Population, Springer;European Association for Population Studies, vol. 34(2), pages 151-168, May.
    2. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    3. Bart Sleutjes & Helga A. G. Valk & Jeroen Ooijevaar, 2018. "The Measurement of Ethnic Segregation in the Netherlands: Differences Between Administrative and Individualized Neighbourhoods," European Journal of Population, Springer;European Association for Population Studies, vol. 34(2), pages 195-224, May.
    4. Yann Algan & Christian Dustmann & Albrecht Glitz & Alan Manning, 2010. "The Economic Situation of First and Second-Generation Immigrants in France, Germany and the United Kingdom," Economic Journal, Royal Economic Society, vol. 120(542), pages 4-30, February.
    5. Michele Lalla & Elena Pirani, 2014. "The secondary education choices of immigrants and non-immigrants in Italy," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 68(3-4), pages 9-46, July-Dece.
    6. Paola Bertolini & Michele Lalla & Francesco Pagliacci, 2015. "School enrolment of first- and second-generation immigrant students in Italy: A geographical analysis," Papers in Regional Science, Wiley Blackwell, vol. 94(1), pages 141-159, March.
    7. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    8. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    9. Anh Ngoc Nguyen & Jim Taylor, 2003. "Post-high school choices: New evidence from a multinomial logit model," Journal of Population Economics, Springer;European Society for Population Economics, vol. 16(2), pages 287-306, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patrizio Frederic & Michele Lalla, 2024. "Lower-to-upper secondary school transition: a Bayesian Lasso approach in data modelling," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(4), pages 3133-3154, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrizio Frederic & Michele Lalla, 2024. "Lower-to-upper secondary school transition: a Bayesian Lasso approach in data modelling," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(4), pages 3133-3154, August.
    2. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    3. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    4. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    5. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    6. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    7. Immanuel Bayer & Philip Groth & Sebastian Schneckener, 2013. "Prediction Errors in Learning Drug Response from Gene Expression Data – Influence of Labeling, Sample Size, and Machine Learning Algorithm," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-13, July.
    8. Mostafa Rezaei & Ivor Cribben & Michele Samorani, 2021. "A clustering-based feature selection method for automatically generated relational attributes," Annals of Operations Research, Springer, vol. 303(1), pages 233-263, August.
    9. Gustavo A. Alonso-Silverio & Víctor Francisco-García & Iris P. Guzmán-Guzmán & Elías Ventura-Molina & Antonio Alarcón-Paredes, 2021. "Toward Non-Invasive Estimation of Blood Glucose Concentration: A Comparative Performance," Mathematics, MDPI, vol. 9(20), pages 1-13, October.
    10. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    11. Karim Barigou & Stéphane Loisel & Yahia Salhi, 2020. "Parsimonious Predictive Mortality Modeling by Regularization and Cross-Validation with and without Covid-Type Effect," Risks, MDPI, vol. 9(1), pages 1-18, December.
    12. Gurgul Henryk & Machno Artur, 2017. "Trade Pattern on Warsaw Stock Exchange and Prediction of Number of Trades," Statistics in Transition New Series, Statistics Poland, vol. 18(1), pages 91-114, March.
    13. Michael Funke & Kadri Männasoo & Helery Tasane, 2023. "Regional Economic Impacts of the Øresund Cross-Border Fixed Link: Cui Bono?," CESifo Working Paper Series 10557, CESifo.
    14. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Post-Print halshs-00917797, HAL.
    15. Zichen Zhang & Ye Eun Bae & Jonathan R. Bradley & Lang Wu & Chong Wu, 2022. "SUMMIT: An integrative approach for better transcriptomic data imputation improves causal gene identification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    17. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    18. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.
    19. Capanu, Marinela & Giurcanu, Mihai & Begg, Colin B. & Gönen, Mithat, 2023. "Subsampling based variable selection for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    20. Abhinav Kaushik & Diane Dunham & Xiaorui Han & Evan Do & Sandra Andorf & Sheena Gupta & Andrea Fernandes & Laurie Elizabeth Kost & Sayantani B. Sindher & Wong Yu & Mindy Tsai & Robert Tibshirani & Sco, 2022. "CD8+ T cell differentiation status correlates with the feasibility of sustained unresponsiveness following oral immunotherapy," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Keywords

    educational inequality; peer effects; educational territorial pattern;
    All these keywords.

    JEL classification:

    • I21 - Health, Education, and Welfare - - Education - - - Analysis of Education
    • I24 - Health, Education, and Welfare - - Education - - - Education and Inequality
    • I25 - Health, Education, and Welfare - - Education - - - Education and Economic Development
    • J15 - Labor and Demographic Economics - - Demographic Economics - - - Economics of Minorities, Races, Indigenous Peoples, and Immigrants; Non-labor Discrimination

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mod:depeco:0168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sara Colombini (email available below). General contact details of provider: https://edirc.repec.org/data/demodit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.