IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v46y2024i3d10.1007_s00291-024-00760-4.html
   My bibliography  Save this article

The single picker routing problem with scattered storage: modeling and evaluation of routing and storage policies

Author

Listed:
  • Laura Lüke

    (Gutenberg School of Management and Economics, Johannes Gutenberg University Mainz)

  • Katrin Heßler

    (Global Data & AI, Schenker AG)

  • Stefan Irnich

    (Gutenberg School of Management and Economics, Johannes Gutenberg University Mainz)

Abstract

Despite ongoing automation efforts, most warehouses are still manually operated using a person-to-parts collection strategy. This process of collecting items of customer orders from different storage locations accounts for the majority of the operating costs of the warehouse. Hence, optimizing picker routes is an important instrument to reduce labor costs. We examine the scattered-storage variant of the single picker routing problem in a one-block parallel-aisle warehouse. With scattered storage, an article can be stored at several storage locations within the warehouse, whereas with classic storage, each article has a unique storage location. We use our recently published network-flow model with covering constraints that is based on an extension of the state space of the dynamic-programming formulation by Ratliff and Rosenthal. With modifications in the state graph, this model serves for both exact and all established heuristic routing methods for picker routing. The latter include traversal, return, largest gap, midpoint, and composite. We show that these routing policies can also be implemented through adaptations in the state space. Extensive computational studies highlight a comparison of the different routing and storage policies (in particular class-based storage policies) in the scattered storage context. Analyses demonstrate which combinations of policies are advantageous for the given warehouse layout. For class-based storage policies, we emphasize how the scattering of articles of different classes should be performed: scattering of C-articles is advantageous with reductions of up to 25%. In contrast, when articles are uniformly distributed, A-articles should be scattered.

Suggested Citation

  • Laura Lüke & Katrin Heßler & Stefan Irnich, 2024. "The single picker routing problem with scattered storage: modeling and evaluation of routing and storage policies," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(3), pages 909-951, September.
  • Handle: RePEc:spr:orspec:v:46:y:2024:i:3:d:10.1007_s00291-024-00760-4
    DOI: 10.1007/s00291-024-00760-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-024-00760-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-024-00760-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Masae, Makusee & Glock, Christoph H. & Grosse, Eric H., 2020. "Order picker routing in warehouses: A systematic literature review," International Journal of Production Economics, Elsevier, vol. 224(C).
    2. Melh Çelk & Haldun Süral, 2014. "Order picking under random and turnover-based storage policies in fishbone aisle warehouses," IISE Transactions, Taylor & Francis Journals, vol. 46(3), pages 283-300.
    3. Gibson, David R. & Sharp, Gunter P., 1992. "Order batching procedures," European Journal of Operational Research, Elsevier, vol. 58(1), pages 57-67, April.
    4. Makusee Masae & Christoph H. Glock & Panupong Vichitkunakorn, 2020. "Optimal order picker routing in a conventional warehouse with two blocks and arbitrary starting and ending points of a tour," International Journal of Production Research, Taylor & Francis Journals, vol. 58(17), pages 5337-5358, September.
    5. Su, Yixuan & Zhu, Xi & Yuan, Jinlong & Teo, Kok Lay & Li, Meixia & Li, Chunfa, 2023. "An extensible multi-block layout warehouse routing optimization model," European Journal of Operational Research, Elsevier, vol. 305(1), pages 222-239.
    6. Ömer Öztürkoğlu & Kevin Gue & Russell Meller, 2012. "Optimal unit-load warehouse designs for single-command operations," IISE Transactions, Taylor & Francis Journals, vol. 44(6), pages 459-475.
    7. Weidinger, Felix & Boysen, Nils & Schneider, Michael, 2019. "Picker routing in the mixed-shelves warehouses of e-commerce retailers," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126182, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    8. Maximilian Löffler & Nils Boysen & Michael Schneider, 2022. "Picker Routing in AGV-Assisted Order Picking Systems," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 440-462, January.
    9. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    10. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    11. Felix Weidinger & Nils Boysen, 2018. "Scattered Storage: How to Distribute Stock Keeping Units All Around a Mixed-Shelves Warehouse," Service Science, INFORMS, vol. 52(6), pages 1412-1427, December.
    12. Weidinger, Felix & Boysen, Nils, 2018. "Scattered Storage: How to Distribute Stock Keeping Units All Around a Mixed-Shelves Warehouse," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126188, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    13. Kevin Gue & Russell Meller, 2009. "Aisle configurations for unit-load warehouses," IISE Transactions, Taylor & Francis Journals, vol. 41(3), pages 171-182.
    14. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2007. "Research on warehouse operation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 177(1), pages 1-21, February.
    15. Masae, Makusee & Glock, C. H. & Vichitkunakorn, Panupong, 2019. "Optimal Order Picker Routing in the Chevron Warehouse," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 117712, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    16. Masae, Makusee & Glock, C. H. & Vichitkunakorn, Panupong, 2019. "Optimal order picker routing in the chevron warehouse," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 119772, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    17. Cormier, Gilles & Gunn, Eldon A., 1992. "A review of warehouse models," European Journal of Operational Research, Elsevier, vol. 58(1), pages 3-13, April.
    18. Weidinger, Felix & Boysen, Nils & Schneider, Michael, 2019. "Picker routing in the mixed-shelves warehouses of e-commerce retailers," European Journal of Operational Research, Elsevier, vol. 274(2), pages 501-515.
    19. Warren H. Hausman & Leroy B. Schwarz & Stephen C. Graves, 1976. "Optimal Storage Assignment in Automatic Warehousing Systems," Management Science, INFORMS, vol. 22(6), pages 629-638, February.
    20. Masae, Makusee & Glock, C. H. & Vichitkunakorn, Panupong, 2020. "Optimal Order Picker Routing in a Conventional Warehouse with Two Blocks and Arbitrary Starting and Ending Points of a Tour," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 118923, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    21. H. Donald Ratliff & Arnon S. Rosenthal, 1983. "Order-Picking in a Rectangular Warehouse: A Solvable Case of the Traveling Salesman Problem," Operations Research, INFORMS, vol. 31(3), pages 507-521, June.
    22. Dominik Goeke & Michael Schneider, 2021. "Modeling Single-Picker Routing Problems in Classical and Modern Warehouses," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 436-451, May.
    23. Roodbergen, Kees Jan & de Koster, Rene, 2001. "Routing order pickers in a warehouse with a middle aisle," European Journal of Operational Research, Elsevier, vol. 133(1), pages 32-43, August.
    24. Behnisch, P. & Glock, C. H. & Grosse, E. H. & Ries, J. M., 2017. "Auf dem Weg zum Warehouse 4.0? - Zum aktuellen Stand der Automatisierung in der Lagerhaltung," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 84808, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    25. Öztürkoğlu, Ömer & Hoser, Deniz, 2019. "A discrete cross aisle design model for order-picking warehouses," European Journal of Operational Research, Elsevier, vol. 275(2), pages 411-430.
    26. A. Scholz & G. Wäscher, 2017. "Order Batching and Picker Routing in manual order picking systems: the benefits of integrated routing," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 491-520, June.
    27. Masae, M. & Glock, C. H. & Vichitkunakorn, P., 2021. "A method for efficiently routing order pickers in the leaf warehouse," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 125847, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    28. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126185, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    29. Daniels, Richard L. & Rummel, Jeffrey L. & Schantz, Robert, 1998. "A model for warehouse order picking," European Journal of Operational Research, Elsevier, vol. 105(1), pages 1-17, February.
    30. Masae, Makusee & Glock, C. H., 2019. "Optimal Order Picker Routing in the Chevron Warehouse," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 116148, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    31. Masae, Makusee & Panupong, Vichitkunakorn & Glock, C. H., 2019. "Optimal routing of order pickers in the leaf warehouse," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 115506, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Korbacher & Katrin Heßler & Stefan Irnich, 2023. "The Single Picker Routing Problem with Scattered Storage: Modeling and Evaluation of Routing and Storage Policies," Working Papers 2302, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    2. Katrin Heßler & Stefan Irnich, 2023. "Exact Solution of the Single Picker Routing Problem with Scattered Storage," Working Papers 2303, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    3. Masae, Makusee & Glock, Christoph H. & Vichitkunakorn, Panupong, 2021. "A method for efficiently routing order pickers in the leaf warehouse," International Journal of Production Economics, Elsevier, vol. 234(C).
    4. Mustapha Haouassi & Yannick Kergosien & Jorge E. Mendoza & Louis-Martin Rousseau, 2022. "The integrated orderline batching, batch scheduling, and picker routing problem with multiple pickers: the benefits of splitting customer orders," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 614-645, September.
    5. Gámez Albán, Harol Mauricio & Cornelissens, Trijntje & Sörensen, Kenneth, 2024. "A new policy for scattered storage assignment to minimize picking travel distances," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1006-1020.
    6. Saylam, Serhat & Çelik, Melih & Süral, Haldun, 2024. "Arc routing based compact formulations for picker routing in single and two block parallel aisle warehouses," European Journal of Operational Research, Elsevier, vol. 313(1), pages 225-240.
    7. Onal, Sevilay & Zhu, Wen & Das, Sanchoy, 2023. "Order picking heuristics for online order fulfillment warehouses with explosive storage," International Journal of Production Economics, Elsevier, vol. 256(C).
    8. Çelik, Melih & Archetti, Claudia & Süral, Haldun, 2022. "Inventory routing in a warehouse: The storage replenishment routing problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1117-1132.
    9. Maximilian Schiffer & Nils Boysen & Patrick S. Klein & Gilbert Laporte & Marco Pavone, 2022. "Optimal Picking Policies in E-Commerce Warehouses," Management Science, INFORMS, vol. 68(10), pages 7497-7517, October.
    10. AERTS, Babiche & CORNELISSENS, Trijntje & SÖRENSEN, Kenneth, 2022. "The internal warehouse replenishment problem: the importance of storage and replenishment policies," Working Papers 2022007, University of Antwerp, Faculty of Business and Economics.
    11. Boysen, Nils & de Koster, René & Füßler, David, 2021. "The forgotten sons: Warehousing systems for brick-and-mortar retail chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 361-381.
    12. Zhuang, Yanling & Zhou, Yun & Hassini, Elkafi & Yuan, Yufei & Hu, Xiangpei, 2024. "Improving order picking efficiency through storage assignment optimization in robotic mobile fulfillment systems," European Journal of Operational Research, Elsevier, vol. 316(2), pages 718-732.
    13. Michele Barbato & Alberto Ceselli & Giovanni Righini, 2024. "A polynomial-time dynamic programming algorithm for an optimal picking problem in automated warehouses," Journal of Scheduling, Springer, vol. 27(4), pages 393-407, August.
    14. David Füßler & Nils Boysen & Konrad Stephan, 2019. "Trolley line picking: storage assignment and order sequencing to increase picking performance," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(4), pages 1087-1121, December.
    15. Li, Xiaowei & Hua, Guowei & Huang, Anqiang & Sheu, Jiuh-Biing & Cheng, T.C.E. & Huang, Fengquan, 2020. "Storage assignment policy with awareness of energy consumption in the Kiva mobile fulfilment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    16. Boysen, Nils & Schwerdfeger, Stefan & Stephan, Konrad, 2023. "A review of synchronization problems in parts-to-picker warehouses," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1374-1390.
    17. Guo, Xiaolong & Chen, Ran & Du, Shaofu & Yu, Yugang, 2021. "Storage assignment for newly arrived items in forward picking areas with limited open locations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    18. Heiko Diefenbach & Simon Emde & Christoph H. Glock & Eric H. Grosse, 2022. "New solution procedures for the order picker routing problem in U-shaped pick areas with a movable depot," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 535-573, June.
    19. Su, Yixuan & Zhu, Xi & Yuan, Jinlong & Teo, Kok Lay & Li, Meixia & Li, Chunfa, 2023. "An extensible multi-block layout warehouse routing optimization model," European Journal of Operational Research, Elsevier, vol. 305(1), pages 222-239.
    20. Nilendra Singh Pawar & Subir S. Rao & Gajendra K. Adil, 2024. "Improving Order-Picking Performance in E-Commerce Warehouses through Entropy-Based Hierarchical Scattering," Sustainability, MDPI, vol. 16(14), pages 1-27, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:46:y:2024:i:3:d:10.1007_s00291-024-00760-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.