IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v277y2019i3p945-952.html
   My bibliography  Save this article

The Mn/Gn/1 queue with vacations and exhaustive service

Author

Listed:
  • Oz, Binyamin
  • Adan, Ivo
  • Haviv, Moshe

Abstract

We consider the Mn/Gn/1 queue with vacations and exhaustive service in which the server takes (repeated) vacations whenever it becomes idle, the service time distribution is queue length dependent, and the arrival rate varies both with the queue length and with the status of the server, being busy or on vacation. Using a rate balance principle, we derive recursive formulas for the conditional distribution of residual service or vacation time given the number of the customers in the system and the status of the server. We also derive a closed-form expression for the steady-state distribution as a function of the probability of an empty system. As an application of the above, we provide a recursive computation method for Nash equilibrium joining strategies to the observable M/G/1 queue with vacations.

Suggested Citation

  • Oz, Binyamin & Adan, Ivo & Haviv, Moshe, 2019. "The Mn/Gn/1 queue with vacations and exhaustive service," European Journal of Operational Research, Elsevier, vol. 277(3), pages 945-952.
  • Handle: RePEc:eee:ejores:v:277:y:2019:i:3:p:945-952
    DOI: 10.1016/j.ejor.2019.03.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719302553
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.03.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boxma, O. J., 1984. "Joint distribution of sojourn time and queue length in the M/G/1 queue with (in) finite capacity," European Journal of Operational Research, Elsevier, vol. 16(2), pages 246-256, May.
    2. Demetrios Fakinos, 1982. "Technical Note—The Expected Remaining Service Time in a Single Server Queue," Operations Research, INFORMS, vol. 30(5), pages 1014-1018, October.
    3. Binyamin Oz & Ivo Adan & Moshe Haviv, 2017. "A rate balance principle and its application to queueing models," Queueing Systems: Theory and Applications, Springer, vol. 87(1), pages 95-111, October.
    4. Naishuo Tian & Zhe George Zhang, 2006. "Vacation Queueing Models Theory and Applications," International Series in Operations Research and Management Science, Springer, number 978-0-387-33723-4, January.
    5. Athanasia Manou & Antonis Economou & Fikri Karaesmen, 2014. "Strategic Customers in a Transportation Station: When Is It Optimal to Wait?," Operations Research, INFORMS, vol. 62(4), pages 910-925, August.
    6. Refael Hassin & Moshe Haviv, 2002. "Nash Equilibrium and Subgame Perfection in Observable Queues," Annals of Operations Research, Springer, vol. 113(1), pages 15-26, July.
    7. Kerner, Yoav, 2011. "Equilibrium joining probabilities for an M/G/1 queue," Games and Economic Behavior, Elsevier, vol. 71(2), pages 521-526, March.
    8. Naishuo Tian & Zhe George Zhang, 2006. "Applications of Vacation Models," International Series in Operations Research & Management Science, in: Vacation Queueing Models Theory and Applications, chapter 0, pages 343-358, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hanukov, Gabi, 2022. "Improving efficiency of service systems by performing a part of the service without the customer's presence," European Journal of Operational Research, Elsevier, vol. 302(2), pages 606-620.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Opher Baron & Antonis Economou & Athanasia Manou, 2022. "Increasing social welfare with delays: Strategic customers in the M/G/1 orbit queue," Production and Operations Management, Production and Operations Management Society, vol. 31(7), pages 2907-2924, July.
    2. Antonis Economou & Athanasia Manou, 2022. "A probabilistic approach for the analysis of the $$M_n/G/1$$ M n / G / 1 queue," Annals of Operations Research, Springer, vol. 317(1), pages 19-27, October.
    3. Zhongbin Wang & Yunan Liu & Lei Fang, 2022. "Pay to activate service in vacation queues," Production and Operations Management, Production and Operations Management Society, vol. 31(6), pages 2609-2627, June.
    4. Sheng Zhu & Jinting Wang & Bin Liu, 2020. "Equilibrium joining strategies in the Mn/G/1 queue with server breakdowns and repairs," Operational Research, Springer, vol. 20(4), pages 2163-2187, December.
    5. Priyanka Kalita & Gautam Choudhury & Dharmaraja Selvamuthu, 2020. "Analysis of Single Server Queue with Modified Vacation Policy," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 511-553, June.
    6. Madhu Jain & Sandeep Kaur & Parminder Singh, 2021. "Supplementary variable technique (SVT) for non-Markovian single server queue with service interruption (QSI)," Operational Research, Springer, vol. 21(4), pages 2203-2246, December.
    7. Yuying Zhang & Dequan Yue & Wuyi Yue, 2022. "A queueing-inventory system with random order size policy and server vacations," Annals of Operations Research, Springer, vol. 310(2), pages 595-620, March.
    8. Houyuan Jiang & Zhan Pang & Sergei Savin, 2012. "Performance-Based Contracts for Outpatient Medical Services," Manufacturing & Service Operations Management, INFORMS, vol. 14(4), pages 654-669, October.
    9. Shan Gao & Zaiming Liu & Qiwen Du, 2014. "Discrete-Time Gix/Geo/1/N Queue With Working Vacations And Vacation Interruption," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 31(01), pages 1-22.
    10. Yi Peng & Jinbiao Wu, 2020. "A Lévy-Driven Stochastic Queueing System with Server Breakdowns and Vacations," Mathematics, MDPI, vol. 8(8), pages 1-12, July.
    11. Pengfei Guo & Zhe George Zhang, 2013. "Strategic Queueing Behavior and Its Impact on System Performance in Service Systems with the Congestion-Based Staffing Policy," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 118-131, September.
    12. Achyutha Krishnamoorthy & Anu Nuthan Joshua & Dmitry Kozyrev, 2021. "Analysis of a Batch Arrival, Batch Service Queuing-Inventory System with Processing of Inventory While on Vacation," Mathematics, MDPI, vol. 9(4), pages 1-29, February.
    13. Srinivas R. Chakravarthy & Serife Ozkar, 2016. "Crowdsourcing and Stochastic Modeling," Business and Management Research, Business and Management Research, Sciedu Press, vol. 5(2), pages 19-30, June.
    14. Zsolt Saffer & Sergey Andreev & Yevgeni Koucheryavy, 2016. "$$M/D^{[y]}/1$$ M / D [ y ] / 1 Periodically gated vacation model and its application to IEEE 802.16 network," Annals of Operations Research, Springer, vol. 239(2), pages 497-520, April.
    15. A. D. Banik & M. L. Chaudhry, 2017. "Efficient Computational Analysis of Stationary Probabilities for the Queueing System BMAP / G /1/ N With or Without Vacation(s)," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 140-151, February.
    16. Shunfu Jin & Xiuchen Qie & Wenjuan Zhao & Wuyi Yue & Yutaka Takahashi, 2020. "A clustered virtual machine allocation strategy based on a sleep-mode with wake-up threshold in a cloud environment," Annals of Operations Research, Springer, vol. 293(1), pages 193-212, October.
    17. Xu Jia & Liu Liwei & Zhu Taozeng, 2018. "Transient Analysis of a Two-Heterogeneous Severs Queue with Impatient Behaviour and Multiple Vacations," Journal of Systems Science and Information, De Gruyter, vol. 6(1), pages 69-84, February.
    18. Amina Angelika Bouchentouf & Abdelhak Guendouzi, 2021. "Single Server Batch Arrival Bernoulli Feedback Queueing System with Waiting Server, K-Variant Vacations and Impatient Customers," SN Operations Research Forum, Springer, vol. 2(1), pages 1-23, March.
    19. Hanukov, Gabi & Avinadav, Tal & Chernonog, Tatyana & Yechiali, Uri, 2020. "A service system with perishable products where customers are either fastidious or strategic," International Journal of Production Economics, Elsevier, vol. 228(C).
    20. Luis Zabala & Josu Doncel & Armando Ferro, 2023. "Modeling a Linux Packet-Capturing System with a Queueing System with Vacations," Mathematics, MDPI, vol. 11(7), pages 1-27, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:277:y:2019:i:3:p:945-952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.