IDEAS home Printed from https://ideas.repec.org/a/eee/oprepe/v7y2020ics2214716019302076.html
   My bibliography  Save this article

A queueing model with server breakdowns, repairs, vacations, and backup server

Author

Listed:
  • Chakravarthy, Srinivas R.
  • Shruti,
  • Kulshrestha, Rakhee

Abstract

Queueing models wherein having a backup server during the absences (caused by vacations and breakdowns) of the main server have found many applications in practice. Such services offered by a backup server can be viewed as the (main) server working during a vacation or during a breakdown period. A backup server offering services can be thought of as the main server working (at a reduced rate) on vacations/repairs. Using Neuts’ versatile point process for the arrivals and modeling the service times with phase type distributions, we propose a model that generalizes some of the previously published ones on working-vacation-breakdown-repair queues. We carry out the steady-state analysis and report interesting illustrative numerical examples. We also prove decomposition results for the rate matrix and the mean number in the system under some special cases.

Suggested Citation

  • Chakravarthy, Srinivas R. & Shruti, & Kulshrestha, Rakhee, 2020. "A queueing model with server breakdowns, repairs, vacations, and backup server," Operations Research Perspectives, Elsevier, vol. 7(C).
  • Handle: RePEc:eee:oprepe:v:7:y:2020:i:c:s2214716019302076
    DOI: 10.1016/j.orp.2019.100131
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2214716019302076
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.orp.2019.100131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Srinivas R. Chakravarthy, 2009. "Analysis Of A Multi-Server Queue With Markovian Arrivals And Synchronous Phase Type Vacations," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 26(01), pages 85-113.
    2. S. W. Fuhrmann & Robert B. Cooper, 1985. "Stochastic Decompositions in the M / G /1 Queue with Generalized Vacations," Operations Research, INFORMS, vol. 33(5), pages 1117-1129, October.
    3. Cosmika Goswami & N. Selvaraju, 2013. "A working vacation queue with priority customers and vacation interruptions," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 17(3), pages 311-332.
    4. Qingqing Ye & Liwei Liu, 2018. "Analysis of MAP/M/1 queue with working breakdowns," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(13), pages 3073-3084, July.
    5. Naishuo Tian & Zhe George Zhang, 2006. "Vacation Queueing Models Theory and Applications," International Series in Operations Research and Management Science, Springer, number 978-0-387-33723-4, January.
    6. Naishuo Tian & Zhe George Zhang, 2006. "Applications of Vacation Models," International Series in Operations Research & Management Science, in: Vacation Queueing Models Theory and Applications, chapter 0, pages 343-358, Springer.
    7. Wojciech M. Kempa, 2016. "Transient workload distribution in the $$M/G/1$$ M / G / 1 finite-buffer queue with single and multiple vacations," Annals of Operations Research, Springer, vol. 239(2), pages 381-400, April.
    8. Kim, Chesoong & Klimenok, V.I. & Dudin, A.N., 2017. "Analysis of unreliable BMAP/PH/N type queue with Markovian flow of breakdowns," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 154-172.
    9. Chakravarthy, Srinivas R., 2007. "A multi-server synchronous vacation model with thresholds and a probabilistic decision rule," European Journal of Operational Research, Elsevier, vol. 182(1), pages 305-320, October.
    10. Cosmika Goswami & N. Selvaraju, 2016. "Phase-Type Arrivals and Impatient Customers in Multiserver Queue with Multiple Working Vacations," Advances in Operations Research, Hindawi, vol. 2016, pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azizi, Fariba & Salari, Nooshin, 2023. "A novel condition-based maintenance framework for parallel manufacturing systems based on bivariate birth/birth–death processes," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    2. Alexander Dudin & Olga Dudina & Sergei Dudin & Konstantin Samouylov, 2021. "Analysis of Multi-Server Queue with Self-Sustained Servers," Mathematics, MDPI, vol. 9(17), pages 1-18, September.
    3. Gabi Hanukov & Shraga Shoval, 2023. "A Model for a Vacation Queuing Policy Considering Server’s Deterioration and Recovery," Mathematics, MDPI, vol. 11(12), pages 1-21, June.
    4. Srinivas R. Chakravarthy & Alexander N. Dudin & Sergey A. Dudin & Olga S. Dudina, 2023. "Queueing System with Potential for Recruiting Secondary Servers," Mathematics, MDPI, vol. 11(3), pages 1-24, January.
    5. Alka Choudhary & Srinivas R. Chakravarthy & Dinesh C. Sharma, 2021. "Analysis of MAP / PH /1 Queueing System with Degrading Service Rate and Phase Type Vacation," Mathematics, MDPI, vol. 9(19), pages 1-17, September.
    6. Mridula Jain & Anamika Jain, 2022. "Genetic algorithm in retrial queueing system with server breakdown and caller intolerance with voluntary service," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 582-598, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madhu Jain & Sandeep Kaur & Parminder Singh, 2021. "Supplementary variable technique (SVT) for non-Markovian single server queue with service interruption (QSI)," Operational Research, Springer, vol. 21(4), pages 2203-2246, December.
    2. Alka Choudhary & Srinivas R. Chakravarthy & Dinesh C. Sharma, 2021. "Analysis of MAP / PH /1 Queueing System with Degrading Service Rate and Phase Type Vacation," Mathematics, MDPI, vol. 9(19), pages 1-17, September.
    3. Priyanka Kalita & Gautam Choudhury & Dharmaraja Selvamuthu, 2020. "Analysis of Single Server Queue with Modified Vacation Policy," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 511-553, June.
    4. Yi Peng & Jinbiao Wu, 2020. "A Lévy-Driven Stochastic Queueing System with Server Breakdowns and Vacations," Mathematics, MDPI, vol. 8(8), pages 1-12, July.
    5. Zsolt Saffer & Sergey Andreev & Yevgeni Koucheryavy, 2016. "$$M/D^{[y]}/1$$ M / D [ y ] / 1 Periodically gated vacation model and its application to IEEE 802.16 network," Annals of Operations Research, Springer, vol. 239(2), pages 497-520, April.
    6. Tuan Phung-Duc, 2017. "Exact solutions for M/M/c/Setup queues," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 64(2), pages 309-324, February.
    7. B. Krishna Kumar & R. Rukmani & A. Thanikachalam & V. Kanakasabapathi, 2018. "Performance analysis of retrial queue with server subject to two types of breakdowns and repairs," Operational Research, Springer, vol. 18(2), pages 521-559, July.
    8. Alexander Dudin & Olga Dudina & Sergei Dudin & Konstantin Samouylov, 2021. "Analysis of Multi-Server Queue with Self-Sustained Servers," Mathematics, MDPI, vol. 9(17), pages 1-18, September.
    9. G. K. Tamrakar & A. Banerjee, 2020. "On steady-state joint distribution of an infinite buffer batch service Poisson queue with single and multiple vacation," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1337-1373, December.
    10. Sem Borst & Onno Boxma, 2018. "Polling: past, present, and perspective," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 335-369, October.
    11. Yuying Zhang & Dequan Yue & Wuyi Yue, 2022. "A queueing-inventory system with random order size policy and server vacations," Annals of Operations Research, Springer, vol. 310(2), pages 595-620, March.
    12. Houyuan Jiang & Zhan Pang & Sergei Savin, 2012. "Performance-Based Contracts for Outpatient Medical Services," Manufacturing & Service Operations Management, INFORMS, vol. 14(4), pages 654-669, October.
    13. Shan Gao & Zaiming Liu & Qiwen Du, 2014. "Discrete-Time Gix/Geo/1/N Queue With Working Vacations And Vacation Interruption," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 31(01), pages 1-22.
    14. Pengfei Guo & Zhe George Zhang, 2013. "Strategic Queueing Behavior and Its Impact on System Performance in Service Systems with the Congestion-Based Staffing Policy," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 118-131, September.
    15. Jianjun Li & Liwei Liu & Tao Jiang, 2018. "Analysis of an M/G/1 queue with vacations and multiple phases of operation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(1), pages 51-72, February.
    16. Achyutha Krishnamoorthy & Anu Nuthan Joshua & Dmitry Kozyrev, 2021. "Analysis of a Batch Arrival, Batch Service Queuing-Inventory System with Processing of Inventory While on Vacation," Mathematics, MDPI, vol. 9(4), pages 1-29, February.
    17. Srinivas R. Chakravarthy & Serife Ozkar, 2016. "Crowdsourcing and Stochastic Modeling," Business and Management Research, Business and Management Research, Sciedu Press, vol. 5(2), pages 19-30, June.
    18. A. D. Banik & M. L. Chaudhry, 2017. "Efficient Computational Analysis of Stationary Probabilities for the Queueing System BMAP / G /1/ N With or Without Vacation(s)," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 140-151, February.
    19. Shunfu Jin & Xiuchen Qie & Wenjuan Zhao & Wuyi Yue & Yutaka Takahashi, 2020. "A clustered virtual machine allocation strategy based on a sleep-mode with wake-up threshold in a cloud environment," Annals of Operations Research, Springer, vol. 293(1), pages 193-212, October.
    20. Xu Jia & Liu Liwei & Zhu Taozeng, 2018. "Transient Analysis of a Two-Heterogeneous Severs Queue with Impatient Behaviour and Multiple Vacations," Journal of Systems Science and Information, De Gruyter, vol. 6(1), pages 69-84, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:oprepe:v:7:y:2020:i:c:s2214716019302076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/operations-research-perspectives .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.