IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v22y2020i2d10.1007_s11009-019-09724-6.html
   My bibliography  Save this article

A Discrete-Time GIX/Geo/1 Queue with Multiple Working Vacations Under Late and Early Arrival System

Author

Listed:
  • F. P. Barbhuiya

    (Indian Institute of Technology Kharagpur)

  • U. C. Gupta

    (Indian Institute of Technology Kharagpur)

Abstract

This paper studies a discrete-time batch arrival GI/Geo/1 queue where the server may take multiple vacations depending on the state of the queue/system. However, during the vacation period, the server does not remain idle and serves the customers with a rate lower than the usual service rate. The vacation time and the service time during working vacations are geometrically distributed. Keeping note of the specific nature of the arrivals and departures in a discrete-time queue, we study the model under late arrival system with delayed access and early arrival system independently. We formulate the system using supplementary variable technique and apply the theory of difference equation to obtain closed-form expressions of steady-state system content distribution at pre-arrival and arbitrary epochs simultaneously, in terms of roots of the associated characteristic equations. We discuss the stability conditions of the system and develop few performance measures as well. Through some numerical examples, we illustrate the feasibility of our theoretical work and highlight the asymptotic behavior of the probability distributions at pre-arrival epochs. We further discuss the impact of various parameters on the performance of the system. The model considered in this paper covers a wide class of vacation and non-vacation queueing models which have been studied in the literature.

Suggested Citation

  • F. P. Barbhuiya & U. C. Gupta, 2020. "A Discrete-Time GIX/Geo/1 Queue with Multiple Working Vacations Under Late and Early Arrival System," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 599-624, June.
  • Handle: RePEc:spr:metcap:v:22:y:2020:i:2:d:10.1007_s11009-019-09724-6
    DOI: 10.1007/s11009-019-09724-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-019-09724-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-019-09724-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S K Samanta & U C Gupta & R K Sharma, 2007. "Analysis of finite capacity discrete-time GI/Geo/1 queueing system with multiple vacations," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(3), pages 368-377, March.
    2. Naishuo Tian & Zhe George Zhang, 2006. "Vacation Queueing Models Theory and Applications," International Series in Operations Research and Management Science, Springer, number 978-0-387-33723-4, January.
    3. Naishuo Tian & Zhe George Zhang, 2006. "Applications of Vacation Models," International Series in Operations Research & Management Science, in: Vacation Queueing Models Theory and Applications, chapter 0, pages 343-358, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Priyanka Kalita & Gautam Choudhury & Dharmaraja Selvamuthu, 2020. "Analysis of Single Server Queue with Modified Vacation Policy," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 511-553, June.
    2. Madhu Jain & Sandeep Kaur & Parminder Singh, 2021. "Supplementary variable technique (SVT) for non-Markovian single server queue with service interruption (QSI)," Operational Research, Springer, vol. 21(4), pages 2203-2246, December.
    3. Yuying Zhang & Dequan Yue & Wuyi Yue, 2022. "A queueing-inventory system with random order size policy and server vacations," Annals of Operations Research, Springer, vol. 310(2), pages 595-620, March.
    4. Yi Peng & Jinbiao Wu, 2020. "A Lévy-Driven Stochastic Queueing System with Server Breakdowns and Vacations," Mathematics, MDPI, vol. 8(8), pages 1-12, July.
    5. Srinivas R. Chakravarthy & Serife Ozkar, 2016. "Crowdsourcing and Stochastic Modeling," Business and Management Research, Business and Management Research, Sciedu Press, vol. 5(2), pages 19-30, June.
    6. Zsolt Saffer & Sergey Andreev & Yevgeni Koucheryavy, 2016. "$$M/D^{[y]}/1$$ M / D [ y ] / 1 Periodically gated vacation model and its application to IEEE 802.16 network," Annals of Operations Research, Springer, vol. 239(2), pages 497-520, April.
    7. Shunfu Jin & Xiuchen Qie & Wenjuan Zhao & Wuyi Yue & Yutaka Takahashi, 2020. "A clustered virtual machine allocation strategy based on a sleep-mode with wake-up threshold in a cloud environment," Annals of Operations Research, Springer, vol. 293(1), pages 193-212, October.
    8. Amina Angelika Bouchentouf & Abdelhak Guendouzi, 2021. "Single Server Batch Arrival Bernoulli Feedback Queueing System with Waiting Server, K-Variant Vacations and Impatient Customers," SN Operations Research Forum, Springer, vol. 2(1), pages 1-23, March.
    9. Alexander Dudin & Sergei Dudin & Valentina Klimenok & Yuliya Gaidamaka, 2021. "Vacation Queueing Model for Performance Evaluation of Multiple Access Information Transmission Systems without Transmission Interruption," Mathematics, MDPI, vol. 9(13), pages 1-15, June.
    10. Chakravarthy, Srinivas R. & Shruti, & Kulshrestha, Rakhee, 2020. "A queueing model with server breakdowns, repairs, vacations, and backup server," Operations Research Perspectives, Elsevier, vol. 7(C).
    11. Kumar, Anshul & Jain, Madhu, 2023. "Cost Optimization of an Unreliable server queue with two stage service process under hybrid vacation policy," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 259-281.
    12. Igor Kleiner & Esther Frostig & David Perry, 2023. "Busy Periods for Queues Alternating Between Two Modes," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-16, June.
    13. Tuan Phung-Duc, 2017. "Exact solutions for M/M/c/Setup queues," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 64(2), pages 309-324, February.
    14. Oz, Binyamin & Adan, Ivo & Haviv, Moshe, 2019. "The Mn/Gn/1 queue with vacations and exhaustive service," European Journal of Operational Research, Elsevier, vol. 277(3), pages 945-952.
    15. Meena, Rakesh Kumar & Jain, Madhu & Sanga, Sudeep Singh & Assad, Assif, 2019. "Fuzzy modeling and harmony search optimization for machining system with general repair, standby support and vacation," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 858-873.
    16. B. Krishna Kumar & R. Rukmani & A. Thanikachalam & V. Kanakasabapathi, 2018. "Performance analysis of retrial queue with server subject to two types of breakdowns and repairs," Operational Research, Springer, vol. 18(2), pages 521-559, July.
    17. Janani, B., 2022. "Transient Analysis of Differentiated Breakdown Model," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    18. Zhongbin Wang & Yunan Liu & Lei Fang, 2022. "Pay to activate service in vacation queues," Production and Operations Management, Production and Operations Management Society, vol. 31(6), pages 2609-2627, June.
    19. Zhang, Zhe George & Tadj, Lotfi & Bounkhel, Messaoud, 2011. "Cost evaluation in M/G/1 queue with T-policy revisited, technical note," European Journal of Operational Research, Elsevier, vol. 214(3), pages 814-817, November.
    20. Alexander Dudin & Olga Dudina & Sergei Dudin & Konstantin Samouylov, 2021. "Analysis of Multi-Server Queue with Self-Sustained Servers," Mathematics, MDPI, vol. 9(17), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:22:y:2020:i:2:d:10.1007_s11009-019-09724-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.