IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v53y2013i2p343-354.html
   My bibliography  Save this article

Moments of discounted aggregate claim costs until ruin in a Sparre Andersen risk model with general interclaim times

Author

Listed:
  • Cheung, Eric C.K.

Abstract

In the context of a Sparre Andersen risk model with arbitrary interclaim time distribution, the moments of discounted aggregate claim costs until ruin are studied. Our analysis relies on a novel generalization of the so-called discounted density which further involves a moment-based component. More specifically, while the usual discounted density contains a discount factor with respect to the time of ruin, we propose to incorporate powers of the sum until ruin of the discounted (and possibly transformed) claims into the density. Probabilistic arguments are applied to derive defective renewal equations satisfied by the moments of discounted aggregate claim costs until ruin. Detailed examples concerning the discounted aggregate claims and the number of claims until ruin are studied upon assumption on the claim severities. Numerical illustrations are also given at the end.

Suggested Citation

  • Cheung, Eric C.K., 2013. "Moments of discounted aggregate claim costs until ruin in a Sparre Andersen risk model with general interclaim times," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 343-354.
  • Handle: RePEc:eee:insuma:v:53:y:2013:i:2:p:343-354
    DOI: 10.1016/j.insmatheco.2013.06.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668713000899
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2013.06.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Runhuan, 2009. "On the total operating costs up to default in a renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 305-314, October.
    2. Willmot, Gordon E., 2007. "On the discounted penalty function in the renewal risk model with general interclaim times," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 17-31, July.
    3. Landriault, David & Shi, Tianxiang & Willmot, Gordon E., 2011. "Joint densities involving the time to ruin in the Sparre Andersen risk model under exponential assumptions," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 371-379.
    4. Frostig, Esther & Pitts, Susan M. & Politis, Konstadinos, 2012. "The time to ruin and the number of claims until ruin for phase-type claims," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 19-25.
    5. Hans Gerber & Elias Shiu, 1998. "On the Time Value of Ruin," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 48-72.
    6. Dickson, David C. M. & Hipp, Christian, 2001. "On the time to ruin for Erlang(2) risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 29(3), pages 333-344, December.
    7. Hans Gerber & Elias Shiu, 2005. "The Time Value of Ruin in a Sparre Andersen Model," North American Actuarial Journal, Taylor & Francis Journals, vol. 9(2), pages 49-69.
    8. Andrei Badescu & David Landriault, 2008. "Recursive Calculation of the Dividend Moments in a Multi-threshold Risk Model," North American Actuarial Journal, Taylor & Francis Journals, vol. 12(1), pages 74-88.
    9. Li, Shuanming & Garrido, Jose, 2004. "On ruin for the Erlang(n) risk process," Insurance: Mathematics and Economics, Elsevier, vol. 34(3), pages 391-408, June.
    10. Landriault, David & Willmot, Gordon, 2008. "On the Gerber-Shiu discounted penalty function in the Sparre Andersen model with an arbitrary interclaim time distribution," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 600-608, April.
    11. Cheung, Eric C.K., 2011. "A generalized penalty function in Sparre Andersen risk models with surplus-dependent premium," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 384-397, May.
    12. Dickson, David C.M., 2012. "The joint distribution of the time to ruin and the number of claims until ruin in the classical risk model," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 334-337.
    13. Daniel Dufresne, 2007. "Fitting combinations of exponentials to probability distributions," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 23(1), pages 23-48, January.
    14. Cheung, Eric C.K. & Feng, Runhuan, 2013. "A unified analysis of claim costs up to ruin in a Markovian arrival risk model," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 98-109.
    15. Leveille, Ghislain & Garrido, Jose, 2001. "Moments of compound renewal sums with discounted claims," Insurance: Mathematics and Economics, Elsevier, vol. 28(2), pages 217-231, April.
    16. Woo, Jae-Kyung, 2010. "Some Remarks on Delayed Renewal Risk Models," ASTIN Bulletin, Cambridge University Press, vol. 40(1), pages 199-219, May.
    17. Willmot, Gordon E. & Woo, Jae-Kyung, 2012. "On the analysis of a general class of dependent risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 134-141.
    18. Eric Cheung & David Landriault, 2009. "Analysis of a Generalized Penalty Function in a Semi-Markovian Risk Model," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(4), pages 497-513.
    19. Cheung, Eric C.K. & Landriault, David & Willmot, Gordon E. & Woo, Jae-Kyung, 2010. "Structural properties of Gerber-Shiu functions in dependent Sparre Andersen models," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 117-126, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yue He & Reiichiro Kawai & Yasutaka Shimizu & Kazutoshi Yamazaki, 2022. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Papers 2203.10680, arXiv.org, revised Dec 2022.
    2. Jae-Kyung Woo & Haibo Liu, 2018. "Discounted Aggregate Claim Costs Until Ruin in the Discrete-Time Renewal Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1285-1318, December.
    3. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    4. Liu, Peng & Zhang, Chunsheng & Ji, Lanpeng, 2017. "A note on ruin problems in perturbed classical risk models," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 28-33.
    5. Cheung, Eric C.K. & Liu, Haibo & Willmot, Gordon E., 2018. "Joint moments of the total discounted gains and losses in the renewal risk model with two-sided jumps," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 358-377.
    6. Eric C.K. Cheung & Haibo Liu & Jae-Kyung Woo, 2015. "On the Joint Analysis of the Total Discounted Payments to Policyholders and Shareholders: Dividend Barrier Strategy," Risks, MDPI, vol. 3(4), pages 1-24, November.
    7. Jiechang Ruan & Wenguang Yu & Ke Song & Yihan Sun & Yujuan Huang & Xinliang Yu, 2019. "A Note on a Generalized Gerber–Shiu Discounted Penalty Function for a Compound Poisson Risk Model," Mathematics, MDPI, vol. 7(10), pages 1-12, September.
    8. Wong, Jeff T.Y. & Cheung, Eric C.K., 2015. "On the time value of Parisian ruin in (dual) renewal risk processes with exponential jumps," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 280-290.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    2. Cheung, Eric C.K. & Liu, Haibo & Willmot, Gordon E., 2018. "Joint moments of the total discounted gains and losses in the renewal risk model with two-sided jumps," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 358-377.
    3. Woo, Jae-Kyung & Cheung, Eric C.K., 2013. "A note on discounted compound renewal sums under dependency," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 170-179.
    4. Cheung, Eric C.K., 2011. "A generalized penalty function in Sparre Andersen risk models with surplus-dependent premium," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 384-397, May.
    5. Wong, Jeff T.Y. & Cheung, Eric C.K., 2015. "On the time value of Parisian ruin in (dual) renewal risk processes with exponential jumps," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 280-290.
    6. Cheung, Eric C.K. & Feng, Runhuan, 2013. "A unified analysis of claim costs up to ruin in a Markovian arrival risk model," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 98-109.
    7. Yi Lu, 2016. "On the Evaluation of Expected Penalties at Claim Instants That Cause Ruin in the Classical Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 237-255, March.
    8. Yue He & Reiichiro Kawai & Yasutaka Shimizu & Kazutoshi Yamazaki, 2022. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Papers 2203.10680, arXiv.org, revised Dec 2022.
    9. Eric C.K. Cheung & Haibo Liu & Jae-Kyung Woo, 2015. "On the Joint Analysis of the Total Discounted Payments to Policyholders and Shareholders: Dividend Barrier Strategy," Risks, MDPI, vol. 3(4), pages 1-24, November.
    10. Albrecher, Hansjörg & Constantinescu, Corina & Pirsic, Gottlieb & Regensburger, Georg & Rosenkranz, Markus, 2010. "An algebraic operator approach to the analysis of Gerber-Shiu functions," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 42-51, February.
    11. Cheung, Eric C.K. & Landriault, David & Willmot, Gordon E. & Woo, Jae-Kyung, 2010. "Structural properties of Gerber-Shiu functions in dependent Sparre Andersen models," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 117-126, February.
    12. Willmot, Gordon E. & Woo, Jae-Kyung, 2012. "On the analysis of a general class of dependent risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 134-141.
    13. Cheung, Eric C.K. & Zhu, Wei, 2023. "Cumulative Parisian ruin in finite and infinite time horizons for a renewal risk process with exponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 84-101.
    14. Zhimin Zhang & Hailiang Yang & Hu Yang, 2012. "On a Sparre Andersen Risk Model with Time-Dependent Claim Sizes and Jump-Diffusion Perturbation," Methodology and Computing in Applied Probability, Springer, vol. 14(4), pages 973-995, December.
    15. Ren, Jiandong, 2009. "A connection between the discounted and non-discounted expected penalty functions in the Sparre Andersen risk model," Statistics & Probability Letters, Elsevier, vol. 79(3), pages 324-330, February.
    16. Landriault, David & Willmot, Gordon, 2008. "On the Gerber-Shiu discounted penalty function in the Sparre Andersen model with an arbitrary interclaim time distribution," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 600-608, April.
    17. Jae-Kyung Woo & Haibo Liu, 2018. "Discounted Aggregate Claim Costs Until Ruin in the Discrete-Time Renewal Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1285-1318, December.
    18. Jang, Jiwook & Dassios, Angelos & Zhao, Hongbiao, 2018. "Moments of renewal shot-noise processes and their applications," LSE Research Online Documents on Economics 87428, London School of Economics and Political Science, LSE Library.
    19. Anna Castañer & M. Claramunt & Maite Mármol, 2012. "Ruin probability and time of ruin with a proportional reinsurance threshold strategy," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 614-638, October.
    20. Hu Yang & Zhimin Zhang, 2009. "On a class of renewal risk model with random income," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(6), pages 678-695, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:53:y:2013:i:2:p:343-354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.