IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-319-13111-5_22.html
   My bibliography  Save this book chapter

The Design of Rapid Transit Networks

In: Location Science

Author

Listed:
  • Gilbert Laporte

    (HEC Montréal)

  • Juan A. Mesa

    (University of Seville)

Abstract

Metro and other rapid transit systems increase the mobility of urban populations while decreasing congestion and pollution. There are now 191 cities with a metro system in the world, 49 of which were inaugurated in the twenty-first century. The design of a rapid transit system is a hard problem involving several players, multiple objectives, sizeable costs and a high level of uncertainty. Operational research techniques cannot fully solve the problem, but they can generate alternative solutions among which the decision makers can choose, and be employed to solve some specific subproblems. The scientific literature on rapid transit location planning has grown at a fast rate over the past 20 years. In this chapter an account of some of the most important results are provided. First the main objectives and indices used in the assessment of rapid transit systems are described. Then the main models and algorithms used to design such systems are reviewed. The case of a single alignment and of a full network are treated separately. Then follows a section on the location of stations on an already existing network.

Suggested Citation

  • Gilbert Laporte & Juan A. Mesa, 2015. "The Design of Rapid Transit Networks," Springer Books, in: Gilbert Laporte & Stefan Nickel & Francisco Saldanha da Gama (ed.), Location Science, edition 127, chapter 0, pages 581-594, Springer.
  • Handle: RePEc:spr:sprchp:978-3-319-13111-5_22
    DOI: 10.1007/978-3-319-13111-5_22
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seyed Sina Mohri & Meisam Akbarzadeh, 2019. "Locating key stations of a metro network using bi-objective programming: discrete and continuous demand mode," Public Transport, Springer, vol. 11(2), pages 321-340, August.
    2. R. S. Thilakaratne & S. C. Wirasinghe, 2016. "Implementation of Bus Rapid Transit (BRT) on an optimal segment of a long regular bus route," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 20(1), pages 15-29, March.
    3. Wenliang Zhou & Xiang Li & Xin Shi, 2023. "Joint Optimization of Time-Dependent Line Planning and Differential Pricing with Passenger Train Choice in High-Speed Railway Networks," Mathematics, MDPI, vol. 11(6), pages 1-28, March.
    4. López-de-los-Mozos, M.C. & Mesa, Juan A. & Schöbel, Anita, 2017. "A general approach for the location of transfer points on a network with a trip covering criterion and mixed distances," European Journal of Operational Research, Elsevier, vol. 260(1), pages 108-121.
    5. Shushan Chai & Qinghuai Liang & Simin Zhong, 2019. "Design of Urban Rail Transit Network Constrained by Urban Road Network, Trips and Land-Use Characteristics," Sustainability, MDPI, vol. 11(21), pages 1-23, November.
    6. Cadarso, Luis & Escudero, Laureano F. & Marín, Angel, 2018. "On strategic multistage operational two-stage stochastic 0–1 optimization for the Rapid Transit Network Design problem," European Journal of Operational Research, Elsevier, vol. 271(2), pages 577-593.
    7. Tanaka, Ken-ichi & Furuta, Takehiro & Toriumi, Shigeki, 2019. "Railway flow interception location model: Model development and case study of Tokyo metropolitan railway network," Operations Research Perspectives, Elsevier, vol. 6(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-319-13111-5_22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.