IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v47y2000i3p223-239.html
   My bibliography  Save this article

Optimal (τ, T) opportunistic maintenance of a k‐out‐of‐n:G system with imperfect PM and partial failure

Author

Listed:
  • Hoang Pham
  • Hongzhou Wang

Abstract

The opportunistic maintenance of a k‐out‐of‐n:G system with imperfect preventive maintenance (PM) is studied in this paper, where partial failure is allowed. In many applications, the optimal maintenance actions for one component often depend on the states of the other components and system reliability requirements. Two new (τ, T) opportunistic maintenance models with the consideration of reliability requirements are proposed. In these two models, only minimal repairs are performed on failed components before time τ and the corrective maintenance (CM) of all failed components are combined with PM of all functioning but deteriorated components after τ; if the system survives to time T without perfect maintenance, it will be subject to PM at time T. Considering maintenance time, asymptotic system cost rate and availability are derived. The results obtained generalize and unify some previous research in this area. Application to aircraft engine maintenance is presented. © 2000 John Wiley & Sons;, Inc. Naval Research Logistics 47: 223–239, 2000

Suggested Citation

  • Hoang Pham & Hongzhou Wang, 2000. "Optimal (τ, T) opportunistic maintenance of a k‐out‐of‐n:G system with imperfect PM and partial failure," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(3), pages 223-239, April.
  • Handle: RePEc:wly:navres:v:47:y:2000:i:3:p:223-239
    DOI: 10.1002/(SICI)1520-6750(200004)47:33.0.CO;2-A
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/(SICI)1520-6750(200004)47:33.0.CO;2-A
    Download Restriction: no

    File URL: https://libkey.io/10.1002/(SICI)1520-6750(200004)47:33.0.CO;2-A?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pham, Hoang & Wang, Hongzhou, 1996. "Imperfect maintenance," European Journal of Operational Research, Elsevier, vol. 94(3), pages 425-438, November.
    2. Richard Barlow & Larry Hunter, 1960. "Optimum Preventive Maintenance Policies," Operations Research, INFORMS, vol. 8(1), pages 90-100, February.
    3. C. Tilquin & R. Cléroux, 1975. "Periodic replacement with minimal repair at failure and adjustment costs," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 22(2), pages 243-254, June.
    4. Philip J. Boland, 1982. "Periodic replacement when minimal repair costs vary with time," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 29(4), pages 541-546, December.
    5. Philip J. Boland & Frank Proschan, 1982. "Periodic Replacement with Increasing Minimal Repair Costs at Failure," Operations Research, INFORMS, vol. 30(6), pages 1183-1189, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hashemi, M. & Asadi, M. & Zarezadeh, S., 2020. "Optimal maintenance policies for coherent systems with multi-type components," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    2. Mengmeng Zhu, 2022. "A new framework of complex system reliability with imperfect maintenance policy," Annals of Operations Research, Springer, vol. 312(1), pages 553-579, May.
    3. Sarang Deo & Seyed Iravani & Tingting Jiang & Karen Smilowitz & Stephen Samuelson, 2013. "Improving Health Outcomes Through Better Capacity Allocation in a Community-Based Chronic Care Model," Operations Research, INFORMS, vol. 61(6), pages 1277-1294, December.
    4. Vu, Hai Canh & Do, Phuc & Fouladirad, Mitra & Grall, Antoine, 2020. "Dynamic opportunistic maintenance planning for multi-component redundant systems with various types of opportunities," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    5. Michael Patriksson & Ann-Brith Strömberg & Adam Wojciechowski, 2015. "The stochastic opportunistic replacement problem, part II: a two-stage solution approach," Annals of Operations Research, Springer, vol. 224(1), pages 51-75, January.
    6. Xiao Yu & Armagan Bayram, 2021. "Managing capacity for virtual and office appointments in chronic care," Health Care Management Science, Springer, vol. 24(4), pages 742-767, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shey-Huei Sheu & Tzu-Hsin Liu & Wei-Teng Sheu & Yu-Hung Chien & Zhe-George Zhang, 2024. "Extended replacement policy for a system under shocks effect," Annals of Operations Research, Springer, vol. 340(1), pages 507-530, September.
    2. Belyi, Dmitriy & Popova, Elmira & Morton, David P. & Damien, Paul, 2017. "Bayesian failure-rate modeling and preventive maintenance optimization," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1085-1093.
    3. Sheu, Shey-Huei & Liu, Tzu-Hsin & Zhang, Zhe-George, 2019. "Extended optimal preventive replacement policies with random working cycle," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 398-415.
    4. Yen-Luan Chen & Chin-Chih Chang & Dwan-Fang Sheu, 2016. "Optimum random and age replacement policies for customer-demand multi-state system reliability under imperfect maintenance," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(5), pages 1130-1141, April.
    5. Maxim Finkelstein & Mahmood Shafiee, 2017. "Preventive maintenance for systems with repairable minor failures," Journal of Risk and Reliability, , vol. 231(2), pages 101-108, April.
    6. Maxim Finkelstein & Gregory Levitin & Oleg A Stepanov, 2019. "On operation termination for degrading systems with two types of failures," Journal of Risk and Reliability, , vol. 233(3), pages 419-426, June.
    7. Yu-Hung Chien & Chin-Chih Chang & Shey-Huei Sheu, 2010. "Optimal age-replacement model with age-dependent type of failure and random lead time based on a cumulative repair-cost limit policy," Annals of Operations Research, Springer, vol. 181(1), pages 723-744, December.
    8. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    9. Mamabolo R. M. & Beichelt F. E., 2004. "Maintenance Policies with Minimal Repair," Stochastics and Quality Control, De Gruyter, vol. 19(2), pages 143-166, January.
    10. Guo R. & Ascher H. & Love E., 2001. "Towards Practical and Synthetical Modelling of Repairable Systems," Stochastics and Quality Control, De Gruyter, vol. 16(1), pages 147-182, January.
    11. Biswas, Atanu & Sarkar, Jyotirmoy, 2000. "Availability of a system maintained through several imperfect repairs before a replacement or a perfect repair," Statistics & Probability Letters, Elsevier, vol. 50(2), pages 105-114, November.
    12. Sheu, Shey-Huei, 1998. "A generalized age and block replacement of a system subject to shocks," European Journal of Operational Research, Elsevier, vol. 108(2), pages 345-362, July.
    13. Ruey Yeh & Wen Chang & Hui-Chiung Lo, 2010. "Optimal threshold values of age and two-phase maintenance policy for leased equipments using age reduction method," Annals of Operations Research, Springer, vol. 181(1), pages 171-183, December.
    14. H. W. Block & W. S. Borges & T. H. Savits, 1988. "A general age replacement model with minimal repair," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(5), pages 365-372, October.
    15. Ming-Yi You & Guang Meng, 2012. "A modularized framework for predictive maintenance scheduling," Journal of Risk and Reliability, , vol. 226(4), pages 380-391, August.
    16. Ciriaco Valdez‐Flores & Richard M. Feldman, 1989. "A survey of preventive maintenance models for stochastically deteriorating single‐unit systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 36(4), pages 419-446, August.
    17. Balakrishnan, N. & Kamps, U. & Kateri, M., 2009. "Minimal repair under a step-stress test," Statistics & Probability Letters, Elsevier, vol. 79(13), pages 1548-1558, July.
    18. You, Ming-Yi & Li, Hongguang & Meng, Guang, 2011. "Control-limit preventive maintenance policies for components subject to imperfect preventive maintenance and variable operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 590-598.
    19. Lin, Zu-Liang & Huang, Yeu-Shiang & Fang, Chih-Chiang, 2015. "Non-periodic preventive maintenance with reliability thresholds for complex repairable systems," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 145-156.
    20. Jiawen Hu & Zuhua Jiang & Hong Wang, 2016. "Preventive maintenance for a single-machine system under variable operational conditions," Journal of Risk and Reliability, , vol. 230(4), pages 391-404, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:47:y:2000:i:3:p:223-239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.