IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2110.06506.html
   My bibliography  Save this paper

New allocation rule of directed hypergraphs

Author

Listed:
  • Taiki Yamada

Abstract

The Shapley value, one of the well-known allocation rules in game theory, does not take into account information about the structure of the graph, so by using the Shapley value for each hyperedge, we introduce a new allocation rule by considering their first-order combination. We proved that some of the properties that hold for Shapley and Myerson values also hold for our allocation rule. In addition, we found the relationship between our allocation rule and the Forman curvature, which plays an important role in discrete geometry.

Suggested Citation

  • Taiki Yamada, 2021. "New allocation rule of directed hypergraphs," Papers 2110.06506, arXiv.org, revised Feb 2023.
  • Handle: RePEc:arx:papers:2110.06506
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2110.06506
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sylvain Béal & André Casajus & Frank Huettner, 2015. "Efficient extensions of the Myerson value," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 45(4), pages 819-827, December.
    2. van den Nouweland, Anne & Borm, Peter & Tijs, Stef, 1992. "Allocation Rules for Hypergraph Communication Situations," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(3), pages 255-268.
    3. González–Arangüena, Enrique & Manuel, Conrado Miguel & del Pozo, Mónica, 2015. "Values of games with weighted graphs," European Journal of Operational Research, Elsevier, vol. 243(1), pages 248-257.
    4. Neyman, Abraham, 1989. "Uniqueness of the Shapley value," Games and Economic Behavior, Elsevier, vol. 1(1), pages 116-118, March.
    5. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    6. D. Gómez & E. González-Arangüena & C. Manuel & G. Owen & M. del Pozo & J. Tejada, 2004. "Splitting graphs when calculating Myerson value for pure overhead games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 59(3), pages 479-489, July.
    7. E. Algaba & J. M. Bilbao & P. Borm & J. J. López, 2001. "The Myerson value for union stable structures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 54(3), pages 359-371, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. González–Arangüena, E. & Manuel, C. & Owen, G. & del Pozo, M., 2017. "The within groups and the between groups Myerson values," European Journal of Operational Research, Elsevier, vol. 257(2), pages 586-600.
    2. C. Manuel & D. Martín, 2021. "A value for communication situations with players having different bargaining abilities," Annals of Operations Research, Springer, vol. 301(1), pages 161-182, June.
    3. Liying Kang & Anna Khmelnitskaya & Erfang Shan & Dolf Talman & Guang Zhang, 2021. "The average tree value for hypergraph games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(3), pages 437-460, December.
    4. Schouten, Jop & Dietzenbacher, Bas & Borm, Peter, 2019. "The Nucleolus and Inheritance of Properties in Communication Situations," Other publications TiSEM bacc7f47-9b6b-4ce4-9f97-4, Tilburg University, School of Economics and Management.
    5. Liying Kang & Anna Khmelnitskaya & Erfang Shan & Dolf Talman & Guang Zhang, 2023. "The two-step average tree value for graph and hypergraph games," Annals of Operations Research, Springer, vol. 323(1), pages 109-129, April.
    6. E. Algaba & J. Bilbao & R. Brink, 2015. "Harsanyi power solutions for games on union stable systems," Annals of Operations Research, Springer, vol. 225(1), pages 27-44, February.
    7. Liying Kang & Anna Khmelnitskaya & Erfang Shan & Dolf Talman & Guang Zhang, 2023. "The two-step average tree value for graph and hypergraph games," Annals of Operations Research, Springer, vol. 323(1), pages 109-129, April.
    8. Takashi Ui & Hiroyuki Kojima & Atsushi Kajii, 2011. "The Myerson value for complete coalition structures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 427-443, December.
    9. J. Schouten & B. Dietzenbacher & P. Borm, 2022. "The nucleolus and inheritance of properties in communication situations," Annals of Operations Research, Springer, vol. 318(2), pages 1117-1135, November.
    10. Erfang Shan & Guang Zhang & Xiaokang Shan, 2018. "The degree value for games with communication structure," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(3), pages 857-871, September.
    11. Daniel Li Li & Erfang Shan, 2021. "Cooperative games with partial information," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(1), pages 297-309, March.
    12. Bas Dietzenbacher & Peter Borm & Ruud Hendrickx, 2017. "Decomposition of network communication games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(3), pages 407-423, June.
    13. Schouten, Jop, 2022. "Cooperation, allocation and strategy in interactive decision-making," Other publications TiSEM d5d41448-8033-4f6b-8ec0-c, Tilburg University, School of Economics and Management.
    14. Encarnacion Algaba & Rene van den Brink, 2021. "Networks, Communication and Hierarchy: Applications to Cooperative Games," Tinbergen Institute Discussion Papers 21-019/IV, Tinbergen Institute.
    15. Encarnacion Algaba & Jesus Mario Bilbao & Rene van den Brink & Jorge J. Lopez, 2011. "The Myerson Value and Superfluous Supports in Union Stable Systems," Tinbergen Institute Discussion Papers 11-127/1, Tinbergen Institute.
    16. E. Algaba & J. M. Bilbao & R. Brink & J. J. López, 2012. "The Myerson Value and Superfluous Supports in Union Stable Systems," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 650-668, November.
    17. Jean-François Caulier & Michel Grabisch & Agnieszka Rusinowska, 2015. "An allocation rule for dynamic random network formation processes," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 60(2), pages 283-313, October.
    18. Caulier, Jean-François & Mauleon, Ana & Vannetelbosch, Vincent, 2015. "Allocation rules for coalitional network games," Mathematical Social Sciences, Elsevier, vol. 78(C), pages 80-88.
    19. Sylvain Béal & Eric Rémila & Philippe Solal, 2015. "Discounted Tree Solutions," Working Papers hal-01377923, HAL.
    20. E. Algaba & J. M. Bilbao & P. Borm & J. J. López, 2000. "The position value for union stable systems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 52(2), pages 221-236, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2110.06506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.