IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v257y2017i1p144-158.html
   My bibliography  Save this article

Run-sum control charts for monitoring the coefficient of variation

Author

Listed:
  • Teoh, W.L.
  • Khoo, Michael B.C.
  • Castagliola, Philippe
  • Yeong, W.C.
  • Teh, S.Y.

Abstract

The coefficient of variation (CV) is a unit-free and effective normalized measure of dispersion. Monitoring the CV is a crucial approach in Statistical Process Control when the quality characteristic has a distinct mean value and its variance is a function of the mean. This setting is common in many scientific areas, such as in the fields of engineering, medicine and various societal applications. Therefore, this paper develops a simple yet efficient procedure to monitor the CV using run-sum control charts. The run-length properties of the run-sum CV (RS-γ) charts are characterized by the Markov chain approach. This paper proposes two optimization algorithms for the RS-γ charts, i.e. by minimizing (i) the average run length (ARL) for a deterministic shift size and (ii) the expected ARL over a process shift domain. Performance comparisons under both the zero- and steady-state modes are made with the Shewhart-γ, Run-rules-γ and EWMA-γ charts. The results show that the proposed RS-γ charts outperform their existing counterparts for all or certain ranges of shifts in the CV. The application of the optimal RS-γ charts is illustrated with real data collected from a casting process.

Suggested Citation

  • Teoh, W.L. & Khoo, Michael B.C. & Castagliola, Philippe & Yeong, W.C. & Teh, S.Y., 2017. "Run-sum control charts for monitoring the coefficient of variation," European Journal of Operational Research, Elsevier, vol. 257(1), pages 144-158.
  • Handle: RePEc:eee:ejores:v:257:y:2017:i:1:p:144-158
    DOI: 10.1016/j.ejor.2016.08.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716307068
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.08.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leoni, Roberto Campos & Costa, Antonio Fernando Branco & Machado, Marcela Aparecida Guerreiro, 2015. "The effect of the autocorrelation on the performance of the T2 chart," European Journal of Operational Research, Elsevier, vol. 247(1), pages 155-165.
    2. Reh, Wolfgang & Scheffler, Bernard, 1996. "Significance tests and confidence intervals for coefficients of variation," Computational Statistics & Data Analysis, Elsevier, vol. 22(4), pages 449-452, August.
    3. Ou, Yanjing & Wu, Zhang & Tsung, Fugee, 2012. "A comparison study of effectiveness and robustness of control charts for monitoring process mean," International Journal of Production Economics, Elsevier, vol. 135(1), pages 479-490.
    4. Jose Dias Curto & Jose Castro Pinto, 2009. "The coefficient of variation asymptotic distribution in the case of non-iid random variables," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(1), pages 21-32.
    5. Bersimis, Sotiris & Koutras, Markos V. & Maravelakis, Petros E., 2014. "A compound control chart for monitoring and controlling high quality processes," European Journal of Operational Research, Elsevier, vol. 233(3), pages 595-603.
    6. Wang, Hsiuying & Huwang, Longcheen & Yu, Jeng Hung, 2015. "Multivariate control charts based on the James–Stein estimator," European Journal of Operational Research, Elsevier, vol. 246(1), pages 119-127.
    7. Haridy, Salah & Wu, Zhang & Lee, Ka Man & Bhuiyan, Nadia, 2013. "Optimal average sample number of the SPRT chart for monitoring fraction nonconforming," European Journal of Operational Research, Elsevier, vol. 229(2), pages 411-421.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Zhi & Mukherjee, Amitava & Liu, Yanchun & Zhang, Jiujun, 2019. "Optimizing joint location-scale monitoring – An adaptive distribution-free approach with minimal loss of information," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1019-1036.
    2. Nasir Abbas & Mu’azu Ramat Abujiya & Muhammad Riaz & Tahir Mahmood, 2020. "Cumulative Sum Chart Modeled under the Presence of Outliers," Mathematics, MDPI, vol. 8(2), pages 1-30, February.
    3. Johannssen, Arne & Chukhrova, Nataliya & Castagliola, Philippe, 2022. "The performance of the hypergeometric np chart with estimated parameter," European Journal of Operational Research, Elsevier, vol. 296(3), pages 873-899.
    4. Nguyen, H.D. & Tran, K.P. & Tran, K.D., 2021. "The effect of measurement errors on the performance of the Exponentially Weighted Moving Average control charts for the Ratio of Two Normally Distributed Variables," European Journal of Operational Research, Elsevier, vol. 293(1), pages 203-218.
    5. Pablo Bonilla-Escribano & David Ramírez & Alejandro Porras-Segovia & Antonio Artés-Rodríguez, 2020. "Assessment of Variability in Irregularly Sampled Time Series: Applications to Mental Healthcare," Mathematics, MDPI, vol. 9(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Zhi & Mukherjee, Amitava & Liu, Yanchun & Zhang, Jiujun, 2019. "Optimizing joint location-scale monitoring – An adaptive distribution-free approach with minimal loss of information," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1019-1036.
    2. Song, Zhi & Mukherjee, Amitava & Zhang, Jiujun, 2021. "Some robust approaches based on copula for monitoring bivariate processes and component-wise assessment," European Journal of Operational Research, Elsevier, vol. 289(1), pages 177-196.
    3. Pang, Wan Kai & Yu, Bosco Wing-Tong & Troutt, Marvin D. & Hou, Shui Hung, 2008. "A simulation-based approach to the study of coefficient of variation of dividend yields," European Journal of Operational Research, Elsevier, vol. 189(2), pages 559-569, September.
    4. Jeffrey Hadachek & Meilin Ma & Richard J. Sexton, 2024. "Market structure and resilience of food supply chains under extreme events," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(1), pages 21-44, January.
    5. Lim, S.L. & Khoo, Michael B.C. & Teoh, W.L. & Xie, M., 2015. "Optimal designs of the variable sample size and sampling interval X¯ chart when process parameters are estimated," International Journal of Production Economics, Elsevier, vol. 166(C), pages 20-35.
    6. Roberto Campos Leoni & Marcela Aparecida Guerreiro Machado & Antonio Fernando Branco Costa, 2016. "The T -super-2 chart with mixed samples to control bivariate autocorrelated processes," International Journal of Production Research, Taylor & Francis Journals, vol. 54(11), pages 3294-3310, June.
    7. Moura Neto, F. & Souza, P. & de Magalhães, M.S., 2019. "Determining baseline profile by diffusion maps," European Journal of Operational Research, Elsevier, vol. 279(1), pages 107-123.
    8. Bersimis, Sotiris & Koutras, Markos V. & Maravelakis, Petros E., 2014. "A compound control chart for monitoring and controlling high quality processes," European Journal of Operational Research, Elsevier, vol. 233(3), pages 595-603.
    9. Nasir Abbas & Muhammad Riaz & Shabbir Ahmad & Muhammad Abid & Babar Zaman, 2020. "On the Efficient Monitoring of Multivariate Processes with Unknown Parameters," Mathematics, MDPI, vol. 8(5), pages 1-32, May.
    10. Nguyen, H.D. & Tran, K.P. & Tran, K.D., 2021. "The effect of measurement errors on the performance of the Exponentially Weighted Moving Average control charts for the Ratio of Two Normally Distributed Variables," European Journal of Operational Research, Elsevier, vol. 293(1), pages 203-218.
    11. Jimmy Lockwood & Larry Lockwood & Sie Ting Lau, 2016. "Lost In Translation: Which Stock Prices Bear The Burden To Adjust To Exchange Rates?," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 39(3), pages 263-290, September.
    12. Shi, Wen & Kleijnen, Jack P.C. & Liu, Zhixue, 2014. "Factor screening for simulation with multiple responses: Sequential bifurcation," European Journal of Operational Research, Elsevier, vol. 237(1), pages 136-147.
    13. Leoni, Roberto Campos & Costa, Antonio Fernando Branco & Machado, Marcela Aparecida Guerreiro, 2015. "The effect of the autocorrelation on the performance of the T2 chart," European Journal of Operational Research, Elsevier, vol. 247(1), pages 155-165.
    14. Zhao, Xian & Wang, Xiaoyue & Sun, Ge, 2015. "Start-up demonstration tests with sparse connection," European Journal of Operational Research, Elsevier, vol. 243(3), pages 865-873.
    15. Jia Geng & Mingsheng Yuan & Shen Xu & Tingting Bai & Yang Xiao & Xiaopeng Li & Dong Xu, 2022. "Urban Expansion Was the Main Driving Force for the Decline in Ecosystem Services in Hainan Island during 1980–2015," IJERPH, MDPI, vol. 19(23), pages 1-18, November.
    16. Chang, Hsing-Ming & Chang, Yung-Ming & Fu, Winnie H.W. & Lee, Wan-Chen, 2018. "On limiting theorems for conditional causation probabilities of multiple-run-rules," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 151-156.
    17. Hazen, Benjamin T. & Weigel, Fred K. & Ezell, Jeremy D. & Boehmke, Bradley C. & Bradley, Randy V., 2017. "Toward understanding outcomes associated with data quality improvement," International Journal of Production Economics, Elsevier, vol. 193(C), pages 737-747.
    18. Pang, Wan-Kai & Leung, Ping-Kei & Huang, Wei-Kwang & Liu, Wei, 2005. "On interval estimation of the coefficient of variation for the three-parameter Weibull, lognormal and gamma distribution: A simulation-based approach," European Journal of Operational Research, Elsevier, vol. 164(2), pages 367-377, July.
    19. Rockerbie, Duane W, 2012. "Exploring inter-league parity in North America: the NBA anomaly," MPRA Paper 43088, University Library of Munich, Germany.
    20. George Djolov, 2014. "A Note on the Estimation of the Gini Index," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 8(3), pages 237-256, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:257:y:2017:i:1:p:144-158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.