IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i2p269-d322045.html
   My bibliography  Save this article

Cumulative Sum Chart Modeled under the Presence of Outliers

Author

Listed:
  • Nasir Abbas

    (Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia)

  • Mu’azu Ramat Abujiya

    (Preparatory Year Mathematics Program, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia)

  • Muhammad Riaz

    (Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia)

  • Tahir Mahmood

    (Department of Systems Engineering and Engineering Management, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China)

Abstract

Cumulative sum control charts that are based on the estimated control limits are extensively used in practice. Such control limits are often characterized by a Phase I estimation error. The presence of these errors can cause a change in the location and/or width of control limits resulting in a deprived performance of the control chart. In this study, we introduce a non-parametric Tukey’s outlier detection model in the design structure of a two-sided cumulative sum (CUSUM) chart with estimated parameters for process monitoring. Using Monte Carlo simulations, we studied the estimation effect on the performance of the CUSUM chart in terms of the average run length and the standard deviation of the run length. We found the new design structure is more stable in the presence of outliers and requires fewer amounts of Phase I observations to stabilize the run-length performance. Finally, a numerical example and practical application of the proposed scheme are demonstrated using a dataset from healthcare surveillance where received signal strength of individuals’ movement is the variable of interest. The implementation of classical CUSUM shows that a shift detection in Phase II that received signal strength data is indeed masked/delayed if there are outliers in Phase I data. On the contrary, the proposed chart omits the Phase I outliers and gives a timely signal in Phase II.

Suggested Citation

  • Nasir Abbas & Mu’azu Ramat Abujiya & Muhammad Riaz & Tahir Mahmood, 2020. "Cumulative Sum Chart Modeled under the Presence of Outliers," Mathematics, MDPI, vol. 8(2), pages 1-30, February.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:2:p:269-:d:322045
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/2/269/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/2/269/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mu’azu Ramat Abujiya & Muhammad Riaz & Muhammad Hisyam Lee, 2015. "Enhanced Cumulative Sum Charts for Monitoring Process Dispersion," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-22, April.
    2. Teoh, W.L. & Khoo, Michael B.C. & Castagliola, Philippe & Yeong, W.C. & Teh, S.Y., 2017. "Run-sum control charts for monitoring the coefficient of variation," European Journal of Operational Research, Elsevier, vol. 257(1), pages 144-158.
    3. Hubert, Mia & Dierckx, Goedele & Vanpaemel, Dina, 2013. "Detecting influential data points for the Hill estimator in Pareto-type distributions," Computational Statistics & Data Analysis, Elsevier, vol. 65(C), pages 13-28.
    4. Asma Amdouni & Philippe Castagliola & Hassen Taleb & Giovanni Celano, 2017. "A variable sampling interval Shewhart control chart for monitoring the coefficient of variation in short production runs," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5521-5536, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Charpentier & Emmanuel Flachaire, 2022. "Pareto models for top incomes and wealth," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 20(1), pages 1-25, March.
    2. Gareth W. Peters & Matteo Malavasi & Georgy Sofronov & Pavel V. Shevchenko & Stefan Truck & Jiwook Jang, 2022. "Cyber Loss Model Risk Translates to Premium Mispricing and Risk Sensitivity," Papers 2202.10588, arXiv.org, revised Mar 2023.
    3. Tomohiro, Ryosuke & Arizono, Ikuo & Takemoto, Yasuhiko, 2020. "Economic design of double sampling Cpm control chart for monitoring process capability," International Journal of Production Economics, Elsevier, vol. 221(C).
    4. Nguyen, H.D. & Tran, K.P. & Tran, K.D., 2021. "The effect of measurement errors on the performance of the Exponentially Weighted Moving Average control charts for the Ratio of Two Normally Distributed Variables," European Journal of Operational Research, Elsevier, vol. 293(1), pages 203-218.
    5. Arthur Charpentier & Emmanuel Flachaire, 2019. "Pareto Models for Top Incomes," Working Papers hal-02145024, HAL.
    6. Gareth W. Peters & Matteo Malavasi & Georgy Sofronov & Pavel V. Shevchenko & Stefan Trück & Jiwook Jang, 2023. "Cyber loss model risk translates to premium mispricing and risk sensitivity," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 372-433, April.
    7. Song, Zhi & Mukherjee, Amitava & Liu, Yanchun & Zhang, Jiujun, 2019. "Optimizing joint location-scale monitoring – An adaptive distribution-free approach with minimal loss of information," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1019-1036.
    8. Pablo Bonilla-Escribano & David Ramírez & Alejandro Porras-Segovia & Antonio Artés-Rodríguez, 2020. "Assessment of Variability in Irregularly Sampled Time Series: Applications to Mental Healthcare," Mathematics, MDPI, vol. 9(1), pages 1-18, December.
    9. Yuri Goegebeur & Armelle Guillou & Jing Qin, 2023. "Robust estimation of the conditional stable tail dependence function," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(2), pages 201-231, April.
    10. Asimit, Alexandru V. & Badescu, Alexandru M. & Verdonck, Tim, 2013. "Optimal risk transfer under quantile-based risk measurers," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 252-265.
    11. Johannssen, Arne & Chukhrova, Nataliya & Castagliola, Philippe, 2022. "The performance of the hypergeometric np chart with estimated parameter," European Journal of Operational Research, Elsevier, vol. 296(3), pages 873-899.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:2:p:269-:d:322045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.