IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v256y2017i1p215-229.html
   My bibliography  Save this article

Robust two-stage stochastic linear optimization with risk aversion

Author

Listed:
  • Ling, Aifan
  • Sun, Jie
  • Xiu, Naihua
  • Yang, Xiaoguang

Abstract

We study a two-stage stochastic linear optimization problem where the recourse function is risk-averse rather than risk neutral. In particular, we consider the mean-conditional value-at-risk objective function in the second stage. The model is robust in the sense that the distribution of the underlying random variable is assumed to belong to a certain family of distributions rather than to be exactly known. We start from analyzing a simple case where uncertainty arises only in the objective function, and then explore the general case where uncertainty also arises in the constraints. We show that the former problem is equivalent to a semidefinite program and the latter problem is generally NP-hard. Applications to two-stage portfolio optimization, material order problems, stochastic production-transportation problem and single facility minimax distance problem are considered. Numerical results show that the proposed robust risk-averse two-stage stochastic programming model can effectively control the risk with solutions of acceptable good quality.

Suggested Citation

  • Ling, Aifan & Sun, Jie & Xiu, Naihua & Yang, Xiaoguang, 2017. "Robust two-stage stochastic linear optimization with risk aversion," European Journal of Operational Research, Elsevier, vol. 256(1), pages 215-229.
  • Handle: RePEc:eee:ejores:v:256:y:2017:i:1:p:215-229
    DOI: 10.1016/j.ejor.2016.06.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716304374
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.06.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ang, James & Meng, Fanwen & Sun, Jie, 2014. "Two-stage stochastic linear programs with incomplete information on uncertainty," European Journal of Operational Research, Elsevier, vol. 233(1), pages 16-22.
    2. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    3. Steftcho P. Dokov & David P. Morton, 2005. "Second-Order Lower Bounds on the Expectation of a Convex Function," Mathematics of Operations Research, INFORMS, vol. 30(3), pages 662-677, August.
    4. Alexandra Künzi-Bay & János Mayer, 2006. "Computational aspects of minimizing conditional value-at-risk," Computational Management Science, Springer, vol. 3(1), pages 3-27, January.
    5. Riis, Morten & Andersen, Kim Allan, 2005. "Applying the minimax criterion in stochastic recourse programs," European Journal of Operational Research, Elsevier, vol. 165(3), pages 569-584, September.
    6. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    7. Keiiti Isii, 1960. "The extrema of probability determined by generalized moments (I) bounded random variables," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 12(2), pages 119-134, June.
    8. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    9. Robert Carbone & Abraham Mehrez, 1980. "Note---The Single Facility Minimax Distance Problem Under Stochastic Location of Demand," Management Science, INFORMS, vol. 26(1), pages 113-115, January.
    10. Dimitris Bertsimas & Xuan Vinh Doan & Karthik Natarajan & Chung-Piaw Teo, 2010. "Models for Minimax Stochastic Linear Optimization Problems with Risk Aversion," Mathematics of Operations Research, INFORMS, vol. 35(3), pages 580-602, August.
    11. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    12. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    13. Philpott, A.B. & de Matos, V.L., 2012. "Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion," European Journal of Operational Research, Elsevier, vol. 218(2), pages 470-483.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panos Xidonas & Ralph Steuer & Christis Hassapis, 2020. "Robust portfolio optimization: a categorized bibliographic review," Annals of Operations Research, Springer, vol. 292(1), pages 533-552, September.
    2. Bei, Xiaoqiang & Zhu, Xiaoyan & Coit, David W., 2019. "A risk-averse stochastic program for integrated system design and preventive maintenance planning," European Journal of Operational Research, Elsevier, vol. 276(2), pages 536-548.
    3. Guan, Zhimin & Mou, Yuxia & Zhang, Jun, 2024. "Incorporating risk aversion and time preference into omnichannel retail operations considering assortment and inventory optimization," European Journal of Operational Research, Elsevier, vol. 314(2), pages 579-596.
    4. Wang, Weiqiao & Yang, Kai & Yang, Lixing & Gao, Ziyou, 2021. "Two-stage distributionally robust programming based on worst-case mean-CVaR criterion and application to disaster relief management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    5. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.
    6. Yining Gu & Yicheng Huang & Yanjun Wang, 2024. "Data-Driven Distributionally Robust Risk-Averse Two-Stage Stochastic Linear Programming over Wasserstein Ball," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 242-279, January.
    7. Adrian Gepp & Geoff Harris & Bruce Vanstone, 2020. "Financial applications of semidefinite programming: a review and call for interdisciplinary research," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(4), pages 3527-3555, December.
    8. Ling, Aifan & Sun, Jie & Wang, Meihua, 2020. "Robust multi-period portfolio selection based on downside risk with asymmetrically distributed uncertainty set," European Journal of Operational Research, Elsevier, vol. 285(1), pages 81-95.
    9. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.
    10. Jin, Zhongyi & Ng, Kam K.H. & Zhang, Chenliang & Liu, Wei & Zhang, Fangni & Xu, Gangyan, 2024. "A risk-averse distributionally robust optimisation approach for drone-supported relief facility location problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Eekelen, Wouter, 2023. "Distributionally robust views on queues and related stochastic models," Other publications TiSEM 9b99fc05-9d68-48eb-ae8c-9, Tilburg University, School of Economics and Management.
    2. Ken Kobayashi & Yuichi Takano & Kazuhide Nakata, 2021. "Bilevel cutting-plane algorithm for cardinality-constrained mean-CVaR portfolio optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 493-528, October.
    3. Benati, S. & Conde, E., 2022. "A relative robust approach on expected returns with bounded CVaR for portfolio selection," European Journal of Operational Research, Elsevier, vol. 296(1), pages 332-352.
    4. Dimitris Bertsimas & Xuan Vinh Doan & Karthik Natarajan & Chung-Piaw Teo, 2010. "Models for Minimax Stochastic Linear Optimization Problems with Risk Aversion," Mathematics of Operations Research, INFORMS, vol. 35(3), pages 580-602, August.
    5. Zhu, Bo & Zhang, Tianlun, 2021. "Long-term wealth growth portfolio allocation under parameter uncertainty: A non-conservative robust approach," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    6. Marla, Lavanya & Rikun, Alexander & Stauffer, Gautier & Pratsini, Eleni, 2020. "Robust modeling and planning: Insights from three industrial applications," Operations Research Perspectives, Elsevier, vol. 7(C).
    7. Napat Rujeerapaiboon & Daniel Kuhn & Wolfram Wiesemann, 2016. "Robust Growth-Optimal Portfolios," Management Science, INFORMS, vol. 62(7), pages 2090-2109, July.
    8. Wei Liu & Li Yang & Bo Yu, 2021. "KDE distributionally robust portfolio optimization with higher moment coherent risk," Annals of Operations Research, Springer, vol. 307(1), pages 363-397, December.
    9. Yining Gu & Yicheng Huang & Yanjun Wang, 2024. "Data-Driven Distributionally Robust Risk-Averse Two-Stage Stochastic Linear Programming over Wasserstein Ball," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 242-279, January.
    10. Kolos Ágoston, 2012. "CVaR minimization by the SRA algorithm," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(4), pages 623-632, December.
    11. Juan Ma & Foad Mahdavi Pajouh & Balabhaskar Balasundaram & Vladimir Boginski, 2016. "The Minimum Spanning k -Core Problem with Bounded CVaR Under Probabilistic Edge Failures," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 295-307, May.
    12. Manish Bansal & Yingqiu Zhang, 2021. "Scenario-based cuts for structured two-stage stochastic and distributionally robust p-order conic mixed integer programs," Journal of Global Optimization, Springer, vol. 81(2), pages 391-433, October.
    13. Rad, Hossein & Low, Rand Kwong Yew & Miffre, Joëlle & Faff, Robert, 2020. "Does sophistication of the weighting scheme enhance the performance of long-short commodity portfolios?," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 164-180.
    14. Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.
    15. Topaloglou, Nikolas & Vladimirou, Hercules & Zenios, Stavros A., 2020. "Integrated dynamic models for hedging international portfolio risks," European Journal of Operational Research, Elsevier, vol. 285(1), pages 48-65.
    16. Martin Branda & Max Bucher & Michal Červinka & Alexandra Schwartz, 2018. "Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization," Computational Optimization and Applications, Springer, vol. 70(2), pages 503-530, June.
    17. Shehadeh, Karmel S. & Cohn, Amy E.M. & Jiang, Ruiwei, 2020. "A distributionally robust optimization approach for outpatient colonoscopy scheduling," European Journal of Operational Research, Elsevier, vol. 283(2), pages 549-561.
    18. Ahmadi-Javid, Amir & Fallah-Tafti, Malihe, 2019. "Portfolio optimization with entropic value-at-risk," European Journal of Operational Research, Elsevier, vol. 279(1), pages 225-241.
    19. Nasini, Stefano & Labbé, Martine & Brotcorne, Luce, 2022. "Multi-market portfolio optimization with conditional value at risk," European Journal of Operational Research, Elsevier, vol. 300(1), pages 350-365.
    20. Pu Huang & Dharmashankar Subramanian, 2012. "Iterative estimation maximization for stochastic linear programs with conditional value-at-risk constraints," Computational Management Science, Springer, vol. 9(4), pages 441-458, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:256:y:2017:i:1:p:215-229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.