IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v254y2016i3p705-714.html
   My bibliography  Save this article

Robust optimal solutions in interval linear programming with forall-exists quantifiers

Author

Listed:
  • Hladík, Milan

Abstract

We introduce a novel kind of robustness in linear programming. A solution x* is called robust optimal if for all realizations of the objective function coefficients and the constraint matrix entries from given interval domains there are appropriate choices of the right-hand side entries from their interval domains such that x* remains optimal. We propose a method to check for robustness of a given point, and also recommend how a suitable candidate can be found. We discuss topological properties of the robust optimal solution set, too. We illustrate applicability of our concept in transportation and nutrition problems. Since not every problem has a robust optimal solution, we introduce also a concept of an approximate robust solution and develop an efficient method; as a side effect, we obtain a simple measure of robustness.

Suggested Citation

  • Hladík, Milan, 2016. "Robust optimal solutions in interval linear programming with forall-exists quantifiers," European Journal of Operational Research, Elsevier, vol. 254(3), pages 705-714.
  • Handle: RePEc:eee:ejores:v:254:y:2016:i:3:p:705-714
    DOI: 10.1016/j.ejor.2016.04.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722171630251X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.04.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nesterov, Y. & Nemirovskii, A., 1995. "An interior-point method for generalized linear-fractional programming," LIDAM Reprints CORE 1168, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Averbakh, Igor & Lebedev, Vasilij, 2005. "On the complexity of minmax regret linear programming," European Journal of Operational Research, Elsevier, vol. 160(1), pages 227-231, January.
    3. V Gabrel & C Murat, 2010. "Robustness and duality in linear programming," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(8), pages 1288-1296, August.
    4. S. Rivaz & M. Yaghoobi, 2013. "Minimax regret solution to multiobjective linear programming problems with interval objective functions coefficients," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(3), pages 625-649, September.
    5. Soyster, A.L. & Murphy, F.H., 2013. "A unifying framework for duality and modeling in robust linear programs," Omega, Elsevier, vol. 41(6), pages 984-997.
    6. Hladík, Milan & Sitarz, Sebastian, 2013. "Maximal and supremal tolerances in multiobjective linear programming," European Journal of Operational Research, Elsevier, vol. 228(1), pages 93-101.
    7. Inuiguchi, Masahiro & Sakawa, Masatoshi, 1995. "Minimax regret solution to linear programming problems with an interval objective function," European Journal of Operational Research, Elsevier, vol. 86(3), pages 526-536, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Farzaneh Ferdowsi & Hamid Reza Maleki & Sanaz Rivaz, 2020. "Air refueling tanker allocation based on a multi-objective zero-one integer programming model," Operational Research, Springer, vol. 20(4), pages 1913-1938, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Rivaz & M. A. Yaghoobi & M. Hladík, 2016. "Using modified maximum regret for finding a necessarily efficient solution in an interval MOLP problem," Fuzzy Optimization and Decision Making, Springer, vol. 15(3), pages 237-253, September.
    2. Henriques, C.O. & Luque, M. & Marcenaro-Gutierrez, O.D. & Lopez-Agudo, L.A., 2019. "A multiobjective interval programming model to explore the trade-offs among different aspects of job satisfaction under different scenarios," Socio-Economic Planning Sciences, Elsevier, vol. 66(C), pages 35-46.
    3. Ng, Tsan Sheng, 2013. "Robust regret for uncertain linear programs with application to co-production models," European Journal of Operational Research, Elsevier, vol. 227(3), pages 483-493.
    4. Milan Hladík, 2023. "Various approaches to multiobjective linear programming problems with interval costs and interval weights," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 713-731, September.
    5. V Gabrel & C Murat, 2010. "Robustness and duality in linear programming," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(8), pages 1288-1296, August.
    6. Groetzner, Patrick & Werner, Ralf, 2022. "Multiobjective optimization under uncertainty: A multiobjective robust (relative) regret approach," European Journal of Operational Research, Elsevier, vol. 296(1), pages 101-115.
    7. Masahiro Inuiguchi & Zhenzhong Gao & Carla Oliveira Henriques, 2023. "Robust optimality analysis of non-degenerate basic feasible solutions in linear programming problems with fuzzy objective coefficients," Fuzzy Optimization and Decision Making, Springer, vol. 22(1), pages 51-79, March.
    8. Christoph Buchheim & Jannis Kurtz, 2018. "Robust combinatorial optimization under convex and discrete cost uncertainty," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 211-238, September.
    9. Kasperski, Adam & Zielinski, Pawel, 2010. "Minmax regret approach and optimality evaluation in combinatorial optimization problems with interval and fuzzy weights," European Journal of Operational Research, Elsevier, vol. 200(3), pages 680-687, February.
    10. Mehdi Allahdadi & Aida Batamiz, 2021. "Generation of some methods for solving interval multi-objective linear programming models," OPSEARCH, Springer;Operational Research Society of India, vol. 58(4), pages 1077-1115, December.
    11. Henriques, C.O. & Inuiguchi, M. & Luque, M. & Figueira, J.R., 2020. "New conditions for testing necessarily/possibly efficiency of non-degenerate basic solutions based on the tolerance approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 341-355.
    12. Luo, Chunling & Tan, Chin Hon & Liu, Xiao, 2020. "Maximum excess dominance: Identifying impractical solutions in linear problems with interval coefficients," European Journal of Operational Research, Elsevier, vol. 282(2), pages 660-676.
    13. Chassein, André & Goerigk, Marc, 2017. "Minmax regret combinatorial optimization problems with ellipsoidal uncertainty sets," European Journal of Operational Research, Elsevier, vol. 258(1), pages 58-69.
    14. Aissi, Hassene & Bazgan, Cristina & Vanderpooten, Daniel, 2009. "Min-max and min-max regret versions of combinatorial optimization problems: A survey," European Journal of Operational Research, Elsevier, vol. 197(2), pages 427-438, September.
    15. Scott E. Sampson, 2008. "OR PRACTICE---Optimization of Vacation Timeshare Scheduling," Operations Research, INFORMS, vol. 56(5), pages 1079-1088, October.
    16. Jungho Park & Hadi El-Amine & Nevin Mutlu, 2021. "An Exact Algorithm for Large-Scale Continuous Nonlinear Resource Allocation Problems with Minimax Regret Objectives," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1213-1228, July.
    17. Valle, C.A. & Meade, N. & Beasley, J.E., 2014. "Absolute return portfolios," Omega, Elsevier, vol. 45(C), pages 20-41.
    18. Alireza Amirteimoori & Simin Masrouri, 2021. "DEA-based competition strategy in the presence of undesirable products: An application to paper mills," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(2), pages 5-21.
    19. Zhou, Feng & Huang, Gordon H. & Chen, Guo-Xian & Guo, Huai-Cheng, 2009. "Enhanced-interval linear programming," European Journal of Operational Research, Elsevier, vol. 199(2), pages 323-333, December.
    20. Giove, Silvio & Funari, Stefania & Nardelli, Carla, 2006. "An interval portfolio selection problem based on regret function," European Journal of Operational Research, Elsevier, vol. 170(1), pages 253-264, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:254:y:2016:i:3:p:705-714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.