IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v283y2020i1p341-355.html
   My bibliography  Save this article

New conditions for testing necessarily/possibly efficiency of non-degenerate basic solutions based on the tolerance approach

Author

Listed:
  • Henriques, C.O.
  • Inuiguchi, M.
  • Luque, M.
  • Figueira, J.R.

Abstract

In this paper, a specific type of multiobjective linear programming problem with interval objective function coefficients is studied. Usually, in such problems, it is not possible to obtain an optimal solution which optimizes simultaneously all objective functions in the interval multiobjective linear programming (IMOLP) problem, requiring the selection of a compromise solution. In conventional multiobjective programming problems these compromise solutions are called efficient solutions. However, the efficiency cannot be defined in a unique way in IMOLP problems. Necessary efficiency and possible efficiency have been considered as two natural extensions of efficiency to IMOLP problems. In this case, necessarily efficient solutions may not exist and the set of possibly efficient solutions usually has an infinite number of elements. Furthermore, it has been concluded that the problem of checking necessary efficiency is co-NP-complete even for the case of only one objective function. In this paper, we explore new conditions for testing necessarily/possibly efficiency of basic non-degenerate solutions in IMOLP problems. We show properties of the necessarily efficient solutions in connection with possibly and necessarily optimal solutions to the related single objective problems. Moreover, we utilize the tolerance approach and sensitivity analysis for testing the necessary efficiency.

Suggested Citation

  • Henriques, C.O. & Inuiguchi, M. & Luque, M. & Figueira, J.R., 2020. "New conditions for testing necessarily/possibly efficiency of non-degenerate basic solutions based on the tolerance approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 341-355.
  • Handle: RePEc:eee:ejores:v:283:y:2020:i:1:p:341-355
    DOI: 10.1016/j.ejor.2019.11.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719309208
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.11.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gabriel R. Bitran, 1980. "Linear Multiple Objective Problems with Interval Coefficients," Management Science, INFORMS, vol. 26(7), pages 694-706, July.
    2. Richard E. Wendell, 1985. "The Tolerance Approach to Sensitivity Analysis in Linear Programming," Management Science, INFORMS, vol. 31(5), pages 564-578, May.
    3. S. Rivaz & M. A. Yaghoobi & M. Hladík, 2016. "Using modified maximum regret for finding a necessarily efficient solution in an interval MOLP problem," Fuzzy Optimization and Decision Making, Springer, vol. 15(3), pages 237-253, September.
    4. Oliveira, Carla & Antunes, Carlos Henggeler, 2007. "Multiple objective linear programming models with interval coefficients - an illustrated overview," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1434-1463, September.
    5. Carla Oliveira & Carlos Antunes & Carlos Barrico, 2014. "An enumerative algorithm for computing all possibly optimal solutions to an interval LP," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 530-542, July.
    6. Richard E. Wendell, 2004. "Tolerance Sensitivity and Optimality Bounds in Linear Programming," Management Science, INFORMS, vol. 50(6), pages 797-803, June.
    7. H E Mausser & M Laguna, 1999. "Minimising the maximum relative regret for linear programmes with interval objective function coefficients," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(10), pages 1063-1070, October.
    8. Ida, Masaaki, 2005. "Efficient solution generation for multiple objective linear programming based on extreme ray generation method," European Journal of Operational Research, Elsevier, vol. 160(1), pages 242-251, January.
    9. Filippi, Carlo, 2005. "A fresh view on the tolerance approach to sensitivity analysis in linear programming," European Journal of Operational Research, Elsevier, vol. 167(1), pages 1-19, November.
    10. S. Rivaz & M. Yaghoobi, 2013. "Minimax regret solution to multiobjective linear programming problems with interval objective functions coefficients," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(3), pages 625-649, September.
    11. Inuiguchi, Masahiro & Sakawa, Masatoshi, 1995. "Minimax regret solution to linear programming problems with an interval objective function," European Journal of Operational Research, Elsevier, vol. 86(3), pages 526-536, November.
    12. Ralph E. Steuer, 1981. "Algorithms for Linear Programming Problems with Interval Objective Function Coefficients," Mathematics of Operations Research, INFORMS, vol. 6(3), pages 333-348, August.
    13. Borgonovo, Emanuele & Buzzard, Gregery T. & Wendell, Richard E., 2018. "A global tolerance approach to sensitivity analysis in linear programming," European Journal of Operational Research, Elsevier, vol. 267(1), pages 321-337.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carla Oliveira Henriques & Dulce Helena Coelho & Maria Elisabete Duarte Neves, 2022. "Investment planning in energy efficiency programs: a portfolio based approach," Operational Research, Springer, vol. 22(1), pages 615-649, March.
    2. Milan Hladík, 2023. "Various approaches to multiobjective linear programming problems with interval costs and interval weights," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 713-731, September.
    3. Carla Oliveira Henriques & Maria Elisabete Neves & Licínio Castelão & Duc Khuong Nguyen, 2022. "Assessing the performance of exchange traded funds in the energy sector: a hybrid DEA multiobjective linear programming approach," Annals of Operations Research, Springer, vol. 313(1), pages 341-366, June.
    4. Masahiro Inuiguchi & Zhenzhong Gao & Carla Oliveira Henriques, 2023. "Robust optimality analysis of non-degenerate basic feasible solutions in linear programming problems with fuzzy objective coefficients," Fuzzy Optimization and Decision Making, Springer, vol. 22(1), pages 51-79, March.
    5. Sandra González-Gallardo & Ana B. Ruiz & Mariano Luque, 2021. "Analysis of the Well-Being Levels of Students in Spain and Finland through Interval Multiobjective Linear Programming," Mathematics, MDPI, vol. 9(14), pages 1-27, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masahiro Inuiguchi & Zhenzhong Gao & Carla Oliveira Henriques, 2023. "Robust optimality analysis of non-degenerate basic feasible solutions in linear programming problems with fuzzy objective coefficients," Fuzzy Optimization and Decision Making, Springer, vol. 22(1), pages 51-79, March.
    2. Wu, Hsien-Chung, 2009. "The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions," European Journal of Operational Research, Elsevier, vol. 196(1), pages 49-60, July.
    3. S. Rivaz & M. A. Yaghoobi & M. Hladík, 2016. "Using modified maximum regret for finding a necessarily efficient solution in an interval MOLP problem," Fuzzy Optimization and Decision Making, Springer, vol. 15(3), pages 237-253, September.
    4. P. Kumar & A. K. Bhurjee, 2022. "Multi-objective enhanced interval optimization problem," Annals of Operations Research, Springer, vol. 311(2), pages 1035-1050, April.
    5. Henriques, C.O. & Luque, M. & Marcenaro-Gutierrez, O.D. & Lopez-Agudo, L.A., 2019. "A multiobjective interval programming model to explore the trade-offs among different aspects of job satisfaction under different scenarios," Socio-Economic Planning Sciences, Elsevier, vol. 66(C), pages 35-46.
    6. Curry, Stewart & Lee, Ilbin & Ma, Simin & Serban, Nicoleta, 2022. "Global sensitivity analysis via a statistical tolerance approach," European Journal of Operational Research, Elsevier, vol. 296(1), pages 44-59.
    7. Milan Hladík, 2023. "Various approaches to multiobjective linear programming problems with interval costs and interval weights," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 713-731, September.
    8. Mehdi Allahdadi & Aida Batamiz, 2021. "Generation of some methods for solving interval multi-objective linear programming models," OPSEARCH, Springer;Operational Research Society of India, vol. 58(4), pages 1077-1115, December.
    9. A O Kazakçi & S Rozakis & D Vanderpooten, 2007. "Energy crop supply in France: a min-max regret approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(11), pages 1470-1479, November.
    10. Dranichak, Garrett M. & Wiecek, Margaret M., 2019. "On highly robust efficient solutions to uncertain multiobjective linear programs," European Journal of Operational Research, Elsevier, vol. 273(1), pages 20-30.
    11. Zhou, Feng & Huang, Gordon H. & Chen, Guo-Xian & Guo, Huai-Cheng, 2009. "Enhanced-interval linear programming," European Journal of Operational Research, Elsevier, vol. 199(2), pages 323-333, December.
    12. Oliveira, Carla & Antunes, Carlos Henggeler, 2007. "Multiple objective linear programming models with interval coefficients - an illustrated overview," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1434-1463, September.
    13. Neralić, Luka & Wendell, Richard E., 2019. "Enlarging the radius of stability and stability regions in Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 278(2), pages 430-441.
    14. Carla Oliveira & Carlos Antunes & Carlos Barrico, 2014. "An enumerative algorithm for computing all possibly optimal solutions to an interval LP," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 530-542, July.
    15. Hladík, Milan & Sitarz, Sebastian, 2013. "Maximal and supremal tolerances in multiobjective linear programming," European Journal of Operational Research, Elsevier, vol. 228(1), pages 93-101.
    16. Groetzner, Patrick & Werner, Ralf, 2022. "Multiobjective optimization under uncertainty: A multiobjective robust (relative) regret approach," European Journal of Operational Research, Elsevier, vol. 296(1), pages 101-115.
    17. Luo, Chunling & Tan, Chin Hon & Liu, Xiao, 2020. "Maximum excess dominance: Identifying impractical solutions in linear problems with interval coefficients," European Journal of Operational Research, Elsevier, vol. 282(2), pages 660-676.
    18. Rozakis, Stelios, 2011. "Impacts of flatter rates and environmental top-ups in Greece: A novel mathematical modeling approach," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 12(2).
    19. Hladík, Milan & Popova, Evgenija D., 2015. "Maximal inner boxes in parametric AE-solution sets with linear shape," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 606-619.
    20. Goberna, M.A. & Jeyakumar, V. & Li, G. & Vicente-Pérez, J., 2018. "Guaranteeing highly robust weakly efficient solutions for uncertain multi-objective convex programs," European Journal of Operational Research, Elsevier, vol. 270(1), pages 40-50.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:283:y:2020:i:1:p:341-355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.