IDEAS home Printed from https://ideas.repec.org/a/spr/fuzodm/v22y2023i1d10.1007_s10700-022-09383-2.html
   My bibliography  Save this article

Robust optimality analysis of non-degenerate basic feasible solutions in linear programming problems with fuzzy objective coefficients

Author

Listed:
  • Masahiro Inuiguchi

    (Osaka University)

  • Zhenzhong Gao

    (Osaka University)

  • Carla Oliveira Henriques

    (Coimbra Business School Research Centre—ISCAC
    University of Coimbra
    University of Coimbra, CeBER)

Abstract

The necessarily optimal solution is known as the most reasonable solution to linear programming problems with interval/fuzzy objective function coefficients. As it remains optimal against the certain fluctuations of objective function coefficients, the necessarily optimal solution can be seen as a robust optimal solution. In this paper, we demonstrate that the necessary optimality degree of a non-degenerate basic feasible solution can be obtained easily by utilizing the tolerance approach. The necessary optimality degree evaluates to what extent the solution remains optimal against the fluctuations of objective function coefficients. Several types of fuzzy subsets showing the possible range of the objective function coefficient vector are considered. For each type of fuzzy subset, an efficient calculation method of necessary optimality degree is proposed. Numerical examples are given to illustrate the proposed methods.

Suggested Citation

  • Masahiro Inuiguchi & Zhenzhong Gao & Carla Oliveira Henriques, 2023. "Robust optimality analysis of non-degenerate basic feasible solutions in linear programming problems with fuzzy objective coefficients," Fuzzy Optimization and Decision Making, Springer, vol. 22(1), pages 51-79, March.
  • Handle: RePEc:spr:fuzodm:v:22:y:2023:i:1:d:10.1007_s10700-022-09383-2
    DOI: 10.1007/s10700-022-09383-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10700-022-09383-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10700-022-09383-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Henriques, C.O. & Inuiguchi, M. & Luque, M. & Figueira, J.R., 2020. "New conditions for testing necessarily/possibly efficiency of non-degenerate basic solutions based on the tolerance approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 341-355.
    2. Richard E. Wendell, 1985. "The Tolerance Approach to Sensitivity Analysis in Linear Programming," Management Science, INFORMS, vol. 31(5), pages 564-578, May.
    3. H E Mausser & M Laguna, 1999. "Minimising the maximum relative regret for linear programmes with interval objective function coefficients," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(10), pages 1063-1070, October.
    4. Filippi, Carlo, 2005. "A fresh view on the tolerance approach to sensitivity analysis in linear programming," European Journal of Operational Research, Elsevier, vol. 167(1), pages 1-19, November.
    5. S. Rivaz & M. Yaghoobi, 2013. "Minimax regret solution to multiobjective linear programming problems with interval objective functions coefficients," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(3), pages 625-649, September.
    6. Inuiguchi, Masahiro & Sakawa, Masatoshi, 1995. "Minimax regret solution to linear programming problems with an interval objective function," European Journal of Operational Research, Elsevier, vol. 86(3), pages 526-536, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henriques, C.O. & Inuiguchi, M. & Luque, M. & Figueira, J.R., 2020. "New conditions for testing necessarily/possibly efficiency of non-degenerate basic solutions based on the tolerance approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 341-355.
    2. Groetzner, Patrick & Werner, Ralf, 2022. "Multiobjective optimization under uncertainty: A multiobjective robust (relative) regret approach," European Journal of Operational Research, Elsevier, vol. 296(1), pages 101-115.
    3. Mavrotas, George & Diakoulaki, Danae & Florios, Kostas & Georgiou, Paraskevas, 2008. "A mathematical programming framework for energy planning in services' sector buildings under uncertainty in load demand: The case of a hospital in Athens," Energy Policy, Elsevier, vol. 36(7), pages 2415-2429, July.
    4. Hladík, Milan & Popova, Evgenija D., 2015. "Maximal inner boxes in parametric AE-solution sets with linear shape," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 606-619.
    5. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    6. S. Rivaz & M. A. Yaghoobi & M. Hladík, 2016. "Using modified maximum regret for finding a necessarily efficient solution in an interval MOLP problem," Fuzzy Optimization and Decision Making, Springer, vol. 15(3), pages 237-253, September.
    7. Georgios P. Trachanas & Aikaterini Forouli & Nikolaos Gkonis & Haris Doukas, 2020. "Hedging uncertainty in energy efficiency strategies: a minimax regret analysis," Operational Research, Springer, vol. 20(4), pages 2229-2244, December.
    8. Mehdi Allahdadi & Aida Batamiz, 2021. "Generation of some methods for solving interval multi-objective linear programming models," OPSEARCH, Springer;Operational Research Society of India, vol. 58(4), pages 1077-1115, December.
    9. Henriques, C.O. & Luque, M. & Marcenaro-Gutierrez, O.D. & Lopez-Agudo, L.A., 2019. "A multiobjective interval programming model to explore the trade-offs among different aspects of job satisfaction under different scenarios," Socio-Economic Planning Sciences, Elsevier, vol. 66(C), pages 35-46.
    10. Neralić, Luka & Wendell, Richard E., 2019. "Enlarging the radius of stability and stability regions in Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 278(2), pages 430-441.
    11. A O Kazakçi & S Rozakis & D Vanderpooten, 2007. "Energy crop supply in France: a min-max regret approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(11), pages 1470-1479, November.
    12. Curry, Stewart & Lee, Ilbin & Ma, Simin & Serban, Nicoleta, 2022. "Global sensitivity analysis via a statistical tolerance approach," European Journal of Operational Research, Elsevier, vol. 296(1), pages 44-59.
    13. Milan Hladík, 2023. "Various approaches to multiobjective linear programming problems with interval costs and interval weights," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 713-731, September.
    14. Hladík, Milan, 2016. "Robust optimal solutions in interval linear programming with forall-exists quantifiers," European Journal of Operational Research, Elsevier, vol. 254(3), pages 705-714.
    15. Borgonovo, Emanuele & Buzzard, Gregery T. & Wendell, Richard E., 2018. "A global tolerance approach to sensitivity analysis in linear programming," European Journal of Operational Research, Elsevier, vol. 267(1), pages 321-337.
    16. Jihee Han & KwangSup Shin, 2016. "Evaluation mechanism for structural robustness of supply chain considering disruption propagation," International Journal of Production Research, Taylor & Francis Journals, vol. 54(1), pages 135-151, January.
    17. Amadeu Almeida Coco & João Carlos Abreu Júnior & Thiago F. Noronha & Andréa Cynthia Santos, 2017. "Erratum to: An integer linear programming formulation and heuristics for the minmax relative regret robust shortest path problem," Journal of Global Optimization, Springer, vol. 68(2), pages 463-466, June.
    18. Singh, Sanjeet & Gupta, Pankaj & Bhatia, Davinder, 2005. "Multiparametric sensitivity analysis in programming problem with linear-plus-linear fractional objective function," European Journal of Operational Research, Elsevier, vol. 160(1), pages 232-241, January.
    19. Zhizhu Lai & Qun Yue & Zheng Wang & Dongmei Ge & Yulong Chen & Zhihong Zhou, 2022. "The min-p robust optimization approach for facility location problem under uncertainty," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1134-1160, September.
    20. Rozakis, Stelios, 2011. "Impacts of flatter rates and environmental top-ups in Greece: A novel mathematical modeling approach," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 12(2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fuzodm:v:22:y:2023:i:1:d:10.1007_s10700-022-09383-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.