IDEAS home Printed from https://ideas.repec.org/a/wut/journl/v31y2021i2p5-20id1583.html
   My bibliography  Save this article

DEA-based competition strategy in the presence of undesirable products: An application to paper mills

Author

Listed:
  • Alireza Amirteimoori
  • Simin Masrouri

Abstract

In real applications of data envelopment analysis (DEA), there are cases in which undesirable outputs are produced along with desirable outputs in such a way that the total sum of the produced undesirable outputs over the production units must be fixed and constant. In this case, a trade-off between the decision-making units (DMUs) is needed to balance the production of undesirable outputs. In a rational sight, this trade-off is done in such a way that all DMUs improve their relative performances. In this paper, a single DEA-based model is proposed to model fixed and variable-sum undesirable outputs in production processes. A common equilibrium efficient frontier is constructed and after reallocating the input/output factors, all decision-making units (DMUs) prevail as efficient. A real case of 32 paper mills in China is given. The results of the analysis demonstrated that some economically developed paper mills have better performance than less developed paper mills; in particular, all efficient paper mills are the developed ones.

Suggested Citation

  • Alireza Amirteimoori & Simin Masrouri, 2021. "DEA-based competition strategy in the presence of undesirable products: An application to paper mills," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(2), pages 5-21.
  • Handle: RePEc:wut:journl:v:31:y:2021:i:2:p:5-20:id:1583
    DOI: 10.37190/ord210201
    as

    Download full text from publisher

    File URL: https://ord.pwr.edu.pl/assets/papers_archive/1566%20-%20published.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.37190/ord210201?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R. Montemanni & J. Barta & M. Mastrolilli & L. M. Gambardella, 2007. "The Robust Traveling Salesman Problem with Interval Data," Transportation Science, INFORMS, vol. 41(3), pages 366-381, August.
    2. Aissi, Hassene & Bazgan, Cristina & Vanderpooten, Daniel, 2007. "Approximation of min-max and min-max regret versions of some combinatorial optimization problems," European Journal of Operational Research, Elsevier, vol. 179(2), pages 281-290, June.
    3. Dale McDaniel & Mike Devine, 1977. "A Modified Benders' Partitioning Algorithm for Mixed Integer Programming," Management Science, INFORMS, vol. 24(3), pages 312-319, November.
    4. Averbakh, Igor & Lebedev, Vasilij, 2005. "On the complexity of minmax regret linear programming," European Journal of Operational Research, Elsevier, vol. 160(1), pages 227-231, January.
    5. Montemanni, R. & Gambardella, L. M., 2005. "A branch and bound algorithm for the robust spanning tree problem with interval data," European Journal of Operational Research, Elsevier, vol. 161(3), pages 771-779, March.
    6. Marc Goerigk & Adam Kasperski & Paweł Zieliński, 2021. "Combinatorial two-stage minmax regret problems under interval uncertainty," Annals of Operations Research, Springer, vol. 300(1), pages 23-50, May.
    7. Montemanni, Roberto, 2006. "A Benders decomposition approach for the robust spanning tree problem with interval data," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1479-1490, November.
    8. Mohammad Javad Feizollahi & Igor Averbakh, 2014. "The Robust (Minmax Regret) Quadratic Assignment Problem with Interval Flows," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 321-335, May.
    9. Amadeu Coco & João Júnior & Thiago Noronha & Andréa Santos, 2014. "An integer linear programming formulation and heuristics for the minmax relative regret robust shortest path problem," Journal of Global Optimization, Springer, vol. 60(2), pages 265-287, October.
    10. Gang Yu, 1996. "On the Max-Min 0-1 Knapsack Problem with Robust Optimization Applications," Operations Research, INFORMS, vol. 44(2), pages 407-415, April.
    11. Alejandro Crema, 2020. "Min max min robust (relative) regret combinatorial optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(2), pages 249-283, October.
    12. Jordi Pereira & Igor Averbakh, 2013. "The Robust Set Covering Problem with interval data," Annals of Operations Research, Springer, vol. 207(1), pages 217-235, August.
    13. Aissi, Hassene & Bazgan, Cristina & Vanderpooten, Daniel, 2009. "Min-max and min-max regret versions of combinatorial optimization problems: A survey," European Journal of Operational Research, Elsevier, vol. 197(2), pages 427-438, September.
    14. Alberto Caprara & Paolo Toth & Matteo Fischetti, 2000. "Algorithms for the Set Covering Problem," Annals of Operations Research, Springer, vol. 98(1), pages 353-371, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aissi, Hassene & Bazgan, Cristina & Vanderpooten, Daniel, 2009. "Min-max and min-max regret versions of combinatorial optimization problems: A survey," European Journal of Operational Research, Elsevier, vol. 197(2), pages 427-438, September.
    2. Wei Wu & Manuel Iori & Silvano Martello & Mutsunori Yagiura, 2022. "An Iterated Dual Substitution Approach for Binary Integer Programming Problems Under the Min-Max Regret Criterion," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2523-2539, September.
    3. Amadeu A. Coco & Andréa Cynthia Santos & Thiago F. Noronha, 2022. "Robust min-max regret covering problems," Computational Optimization and Applications, Springer, vol. 83(1), pages 111-141, September.
    4. Marc Goerigk & Adam Kasperski & Paweł Zieliński, 2021. "Combinatorial two-stage minmax regret problems under interval uncertainty," Annals of Operations Research, Springer, vol. 300(1), pages 23-50, May.
    5. Jordi Pereira & Igor Averbakh, 2013. "The Robust Set Covering Problem with interval data," Annals of Operations Research, Springer, vol. 207(1), pages 217-235, August.
    6. Mohammad Javad Feizollahi & Igor Averbakh, 2014. "The Robust (Minmax Regret) Quadratic Assignment Problem with Interval Flows," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 321-335, May.
    7. Conde, Eduardo, 2012. "On a constant factor approximation for minmax regret problems using a symmetry point scenario," European Journal of Operational Research, Elsevier, vol. 219(2), pages 452-457.
    8. Fabio Furini & Manuel Iori & Silvano Martello & Mutsunori Yagiura, 2015. "Heuristic and Exact Algorithms for the Interval Min–Max Regret Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 392-405, May.
    9. Chassein, André B. & Goerigk, Marc, 2015. "A new bound for the midpoint solution in minmax regret optimization with an application to the robust shortest path problem," European Journal of Operational Research, Elsevier, vol. 244(3), pages 739-747.
    10. Fabrice Talla Nobibon & Roel Leus, 2014. "Complexity Results and Exact Algorithms for Robust Knapsack Problems," Journal of Optimization Theory and Applications, Springer, vol. 161(2), pages 533-552, May.
    11. Nikulin, Yury, 2006. "Robustness in combinatorial optimization and scheduling theory: An extended annotated bibliography," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 606, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    12. Chassein, André & Goerigk, Marc, 2017. "Minmax regret combinatorial optimization problems with ellipsoidal uncertainty sets," European Journal of Operational Research, Elsevier, vol. 258(1), pages 58-69.
    13. J. Puerto & A. M. Rodríguez-Chía & A. Tamir, 2009. "Minimax Regret Single-Facility Ordered Median Location Problems on Networks," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 77-87, February.
    14. Adam Kasperski & Paweł Zieliński, 2009. "A randomized algorithm for the min-max selecting items problem with uncertain weights," Annals of Operations Research, Springer, vol. 172(1), pages 221-230, November.
    15. Chen, Xujin & Hu, Jie & Hu, Xiaodong, 2009. "A polynomial solvable minimum risk spanning tree problem with interval data," European Journal of Operational Research, Elsevier, vol. 198(1), pages 43-46, October.
    16. Pätzold, Julius & Schöbel, Anita, 2020. "Approximate cutting plane approaches for exact solutions to robust optimization problems," European Journal of Operational Research, Elsevier, vol. 284(1), pages 20-30.
    17. Choi, Byung-Cheon & Chung, Kwanghun, 2016. "Min–max regret version of a scheduling problem with outsourcing decisions under processing time uncertainty," European Journal of Operational Research, Elsevier, vol. 252(2), pages 367-375.
    18. Conde, Eduardo & Candia, Alfredo, 2007. "Minimax regret spanning arborescences under uncertain costs," European Journal of Operational Research, Elsevier, vol. 182(2), pages 561-577, October.
    19. Sebastián Moreno & Jordi Pereira & Wilfredo Yushimito, 2020. "A hybrid K-means and integer programming method for commercial territory design: a case study in meat distribution," Annals of Operations Research, Springer, vol. 286(1), pages 87-117, March.
    20. Roy, Bernard, 2010. "Robustness in operational research and decision aiding: A multi-faceted issue," European Journal of Operational Research, Elsevier, vol. 200(3), pages 629-638, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wut:journl:v:31:y:2021:i:2:p:5-20:id:1583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adam Kasperski (email available below). General contact details of provider: https://edirc.repec.org/data/iopwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.