IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v282y2020i2p660-676.html
   My bibliography  Save this article

Maximum excess dominance: Identifying impractical solutions in linear problems with interval coefficients

Author

Listed:
  • Luo, Chunling
  • Tan, Chin Hon
  • Liu, Xiao

Abstract

In this paper, we propose the concept of maximum excess dominance (MED) and illustrate how it can be used to compare solutions in linear optimization problems with interval objective coefficients. When a solution dominates another solution with MED, the expected outcome of the former is guaranteed to be better than that of the latter across a wide range of probability distributions. Hence, MED can be used to eliminate dominated solutions from consideration. Furthermore, we provide an efficient way to check if a solution is dominated by another feasible solution in binary optimization problems and illustrate how dominated solutions can be pruned away by introducing MED constraints to the original binary optimization formulation. We also propose an algorithm to find the best non-dominated solution and conduct computational experiments to evaluate its performance.

Suggested Citation

  • Luo, Chunling & Tan, Chin Hon & Liu, Xiao, 2020. "Maximum excess dominance: Identifying impractical solutions in linear problems with interval coefficients," European Journal of Operational Research, Elsevier, vol. 282(2), pages 660-676.
  • Handle: RePEc:eee:ejores:v:282:y:2020:i:2:p:660-676
    DOI: 10.1016/j.ejor.2019.09.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719307878
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.09.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ishibuchi, Hisao & Tanaka, Hideo, 1990. "Multiobjective programming in optimization of the interval objective function," European Journal of Operational Research, Elsevier, vol. 48(2), pages 219-225, September.
    2. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    3. Shaban Boloukat, Mohammad Hadi & Akbari Foroud, Asghar, 2016. "Stochastic-based resource expansion planning for a grid-connected microgrid using interval linear programming," Energy, Elsevier, vol. 113(C), pages 776-787.
    4. Schang, Laura & Hynninen, Yrjänä & Morton, Alec & Salo, Ahti, 2016. "Developing robust composite measures of healthcare quality – Ranking intervals and dominance relations for Scottish Health Boards," Social Science & Medicine, Elsevier, vol. 162(C), pages 59-67.
    5. Averbakh, Igor & Lebedev, Vasilij, 2005. "On the complexity of minmax regret linear programming," European Journal of Operational Research, Elsevier, vol. 160(1), pages 227-231, January.
    6. Sengupta, Atanu & Pal, Tapan Kumar, 2000. "On comparing interval numbers," European Journal of Operational Research, Elsevier, vol. 127(1), pages 28-43, November.
    7. Luis V. Montiel & J. Eric Bickel, 2013. "Approximating Joint Probability Distributions Given Partial Information," Decision Analysis, INFORMS, vol. 10(1), pages 26-41, March.
    8. Oliveira, Carla & Antunes, Carlos Henggeler, 2007. "Multiple objective linear programming models with interval coefficients - an illustrated overview," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1434-1463, September.
    9. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    10. Aharon Ben-Tal & Dimitris Bertsimas & David B. Brown, 2010. "A Soft Robust Model for Optimization Under Ambiguity," Operations Research, INFORMS, vol. 58(4-part-2), pages 1220-1234, August.
    11. Gilbert, Hugo & Spanjaard, Olivier, 2017. "A double oracle approach to minmax regret optimization problems with interval data," European Journal of Operational Research, Elsevier, vol. 262(3), pages 929-943.
    12. Conde, Eduardo & Leal, Marina & Puerto, Justo, 2018. "A minmax regret version of the time-dependent shortest path problem," European Journal of Operational Research, Elsevier, vol. 270(3), pages 968-981.
    13. Haim Levy, 1992. "Stochastic Dominance and Expected Utility: Survey and Analysis," Management Science, INFORMS, vol. 38(4), pages 555-593, April.
    14. Xu, Zeshui & Chen, Jian, 2008. "Some models for deriving the priority weights from interval fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 184(1), pages 266-280, January.
    15. Georgia Perakis & Guillaume Roels, 2010. "Robust Controls for Network Revenue Management," Manufacturing & Service Operations Management, INFORMS, vol. 12(1), pages 56-76, November.
    16. Nikolaos Argyris & José Figueira & Alec Morton, 2011. "Identifying preferred solutions to Multi-Objective Binary Optimisation problems, with an application to the Multi-Objective Knapsack Problem," Journal of Global Optimization, Springer, vol. 49(2), pages 213-235, February.
    17. Moshe Leshno & Haim Levy, 2002. "Preferred by "All" and Preferred by "Most" Decision Makers: Almost Stochastic Dominance," Management Science, INFORMS, vol. 48(8), pages 1074-1085, August.
    18. Chin Hon Tan & Chunling Luo, 2017. "Clear Preferences Under Partial Distribution Information," Decision Analysis, INFORMS, vol. 14(1), pages 65-73, March.
    19. Chassein, André & Dokka, Trivikram & Goerigk, Marc, 2019. "Algorithms and uncertainty sets for data-driven robust shortest path problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 671-686.
    20. Aissi, Hassene & Bazgan, Cristina & Vanderpooten, Daniel, 2009. "Min-max and min-max regret versions of combinatorial optimization problems: A survey," European Journal of Operational Research, Elsevier, vol. 197(2), pages 427-438, September.
    21. Luis V. Montiel & J. Eric Bickel, 2012. "A Simulation-Based Approach to Decision Making with Partial Information," Decision Analysis, INFORMS, vol. 9(4), pages 329-347, December.
    22. Inuiguchi, Masahiro & Sakawa, Masatoshi, 1995. "Minimax regret solution to linear programming problems with an interval objective function," European Journal of Operational Research, Elsevier, vol. 86(3), pages 526-536, November.
    23. Ralph E. Steuer, 1981. "Algorithms for Linear Programming Problems with Interval Objective Function Coefficients," Mathematics of Operations Research, INFORMS, vol. 6(3), pages 333-348, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Feng & Huang, Gordon H. & Chen, Guo-Xian & Guo, Huai-Cheng, 2009. "Enhanced-interval linear programming," European Journal of Operational Research, Elsevier, vol. 199(2), pages 323-333, December.
    2. Wu, Hsien-Chung, 2009. "The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions," European Journal of Operational Research, Elsevier, vol. 196(1), pages 49-60, July.
    3. Mengshi Lu & Zuo‐Jun Max Shen, 2021. "A Review of Robust Operations Management under Model Uncertainty," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1927-1943, June.
    4. Chassein, André & Goerigk, Marc, 2017. "Minmax regret combinatorial optimization problems with ellipsoidal uncertainty sets," European Journal of Operational Research, Elsevier, vol. 258(1), pages 58-69.
    5. Xie, Chen & Wang, Liangquan & Yang, Chaolin, 2021. "Robust inventory management with multiple supply sources," European Journal of Operational Research, Elsevier, vol. 295(2), pages 463-474.
    6. Christoph Buchheim & Jannis Kurtz, 2018. "Robust combinatorial optimization under convex and discrete cost uncertainty," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 211-238, September.
    7. Liesiö, Juuso & Salo, Ahti, 2012. "Scenario-based portfolio selection of investment projects with incomplete probability and utility information," European Journal of Operational Research, Elsevier, vol. 217(1), pages 162-172.
    8. Andrew J. Keith & Darryl K. Ahner, 2021. "A survey of decision making and optimization under uncertainty," Annals of Operations Research, Springer, vol. 300(2), pages 319-353, May.
    9. Marla, Lavanya & Rikun, Alexander & Stauffer, Gautier & Pratsini, Eleni, 2020. "Robust modeling and planning: Insights from three industrial applications," Operations Research Perspectives, Elsevier, vol. 7(C).
    10. S. Rivaz & M. A. Yaghoobi & M. Hladík, 2016. "Using modified maximum regret for finding a necessarily efficient solution in an interval MOLP problem," Fuzzy Optimization and Decision Making, Springer, vol. 15(3), pages 237-253, September.
    11. Georgios P. Trachanas & Aikaterini Forouli & Nikolaos Gkonis & Haris Doukas, 2020. "Hedging uncertainty in energy efficiency strategies: a minimax regret analysis," Operational Research, Springer, vol. 20(4), pages 2229-2244, December.
    12. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    13. Henriques, C.O. & Inuiguchi, M. & Luque, M. & Figueira, J.R., 2020. "New conditions for testing necessarily/possibly efficiency of non-degenerate basic solutions based on the tolerance approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 341-355.
    14. Chassein, André & Goerigk, Marc & Kasperski, Adam & Zieliński, Paweł, 2018. "On recoverable and two-stage robust selection problems with budgeted uncertainty," European Journal of Operational Research, Elsevier, vol. 265(2), pages 423-436.
    15. Oliveira, Carla & Antunes, Carlos Henggeler, 2007. "Multiple objective linear programming models with interval coefficients - an illustrated overview," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1434-1463, September.
    16. A O Kazakçi & S Rozakis & D Vanderpooten, 2007. "Energy crop supply in France: a min-max regret approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(11), pages 1470-1479, November.
    17. Carla Oliveira & Carlos Antunes & Carlos Barrico, 2014. "An enumerative algorithm for computing all possibly optimal solutions to an interval LP," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 530-542, July.
    18. V Gabrel & C Murat, 2010. "Robustness and duality in linear programming," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(8), pages 1288-1296, August.
    19. Chin Hon Tan & Chunling Luo, 2017. "Clear Preferences Under Partial Distribution Information," Decision Analysis, INFORMS, vol. 14(1), pages 65-73, March.
    20. Aissi, Hassene & Bazgan, Cristina & Vanderpooten, Daniel, 2009. "Min-max and min-max regret versions of combinatorial optimization problems: A survey," European Journal of Operational Research, Elsevier, vol. 197(2), pages 427-438, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:282:y:2020:i:2:p:660-676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.