IDEAS home Printed from https://ideas.repec.org/a/bla/bstrat/v30y2021i7p2907-2921.html
   My bibliography  Save this article

Proposing effective strategies for meeting an environmental regulation with attainable technology improvement targets

Author

Listed:
  • Shogo Eguchi
  • Hirotaka Takayabu
  • Mitsuki Kaneko
  • Shigemi Kagawa
  • Shunichi Hienuki

Abstract

The Japanese government will adopt the CAFE standard after 2020. By using a “modified” slacks‐based measure (SBM) model, this study analyzed the technical efficiency of 113 gasoline vehicle models (GVs) and 54 hybrid vehicle models (HVs) sold by Japanese manufacturers in 2016. We also estimated attainable fuel efficiency of specific vehicle models that can be further improved referring to the nearest point on the best practice frontier. The improved CAFE values and standards of the nine automobile manufacturers were calculated. The technology gap from the vehicle technology frontier was more noticeable among gasoline vehicles than among hybrids. Moreover, most automobile manufacturers can achieve the CAFE standard through an effective achievement strategy based on best practice technologies, whereas the others will not achieve the CAFE standard even given a rapid technology innovation beyond the best practice frontiers for GVs and HVs.

Suggested Citation

  • Shogo Eguchi & Hirotaka Takayabu & Mitsuki Kaneko & Shigemi Kagawa & Shunichi Hienuki, 2021. "Proposing effective strategies for meeting an environmental regulation with attainable technology improvement targets," Business Strategy and the Environment, Wiley Blackwell, vol. 30(7), pages 2907-2921, November.
  • Handle: RePEc:bla:bstrat:v:30:y:2021:i:7:p:2907-2921
    DOI: 10.1002/bse.2778
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/bse.2778
    Download Restriction: no

    File URL: https://libkey.io/10.1002/bse.2778?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chen, Chialin & Zhu, Joe & Yu, Jiun-Yu & Noori, Hamid, 2012. "A new methodology for evaluating sustainable product design performance with two-stage network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 221(2), pages 348-359.
    2. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    3. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    4. Greene, David & Hossain, Anushah & Hofmann, Julia & Helfand, Gloria & Beach, Robert, 2018. "Consumer willingness to pay for vehicle attributes: What do we Know?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 258-279.
    5. Toshiyuki Sueyoshi & Mika Goto, 2017. "World trend in energy: an extension to DEA applied to energy and environment," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-23, December.
    6. Stephane Hess & Mark Fowler & Thomas Adler & Aniss Bahreinian, 2012. "A joint model for vehicle type and fuel type choice: evidence from a cross-nested logit study," Transportation, Springer, vol. 39(3), pages 593-625, May.
    7. Mitsuki Kaneko, 2019. "A Lifecycle Analysis of the Corporate Average Fuel Economy Standards in Japan," Energies, MDPI, vol. 12(4), pages 1-14, February.
    8. Christos Papahristodoulou, 1997. "A DEA model to evaluate car efficiency," Applied Economics, Taylor & Francis Journals, vol. 29(11), pages 1493-1508.
    9. Maria Silva Portela & Pedro Borges & Emmanuel Thanassoulis, 2003. "Finding Closest Targets in Non-Oriented DEA Models: The Case of Convex and Non-Convex Technologies," Journal of Productivity Analysis, Springer, vol. 19(2), pages 251-269, April.
    10. Hirofumi Fukuyama & Hiroya Masaki & Kazuyuki Sekitani & Jianming Shi, 2014. "Distance optimization approach to ratio-form efficiency measures in data envelopment analysis," Journal of Productivity Analysis, Springer, vol. 42(2), pages 175-186, October.
    11. Lim, Dong-Joon, 2016. "Inverse DEA with frontier changes for new product target setting," European Journal of Operational Research, Elsevier, vol. 254(2), pages 510-516.
    12. Eguchi, Shogo & Takayabu, Hirotaka & Lin, Chen, 2021. "Sources of inefficient power generation by coal-fired thermal power plants in China: A metafrontier DEA decomposition approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    13. Odeck, James, 2000. "Assessing the relative efficiency and productivity growth of vehicle inspection services: An application of DEA and Malmquist indices," European Journal of Operational Research, Elsevier, vol. 126(3), pages 501-514, November.
    14. Voltes-Dorta, Augusto & Perdiguero, Jordi & Jiménez, Juan Luis, 2013. "Are car manufacturers on the way to reduce CO2 emissions?: A DEA approach," Energy Economics, Elsevier, vol. 38(C), pages 77-86.
    15. Hampf, Benjamin & Krüger, Jens, 2014. "Technical Efficiency of Automobiles - A Nonparametric Approach Incorporating Carbon Dioxide Emissions," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 69998, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    16. González, Eduardo & Cárcaba, Ana & Ventura, Juan, 2015. "How car dealers adjust prices to reach the product efficiency frontier in the Spanish automobile market," Omega, Elsevier, vol. 51(C), pages 38-48.
    17. Juan Aparicio & José Ruiz & Inmaculada Sirvent, 2007. "Closest targets and minimum distance to the Pareto-efficient frontier in DEA," Journal of Productivity Analysis, Springer, vol. 28(3), pages 209-218, December.
    18. Aparicio, Juan & Pastor, Jesus T., 2014. "Closest targets and strong monotonicity on the strongly efficient frontier in DEA," Omega, Elsevier, vol. 44(C), pages 51-57.
    19. Li, Yi & Wang, Zhaohua & Wang, Ke & Zhang, Bin, 2021. "Fuel economy of Chinese light-duty car manufacturers: An efficiency analysis perspective," Energy, Elsevier, vol. 220(C).
    20. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nakaishi, Tomoaki & Takayabu, Hirotaka & Eguchi, Shogo, 2021. "Environmental efficiency analysis of China's coal-fired power plants considering heterogeneity in power generation company groups," Energy Economics, Elsevier, vol. 102(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Aparicio & Magdalena Kapelko & Bernhard Mahlberg & Jose L. Sainz-Pardo, 2017. "Measuring input-specific productivity change based on the principle of least action," Journal of Productivity Analysis, Springer, vol. 47(1), pages 17-31, February.
    2. Aparicio, Juan & Cordero, Jose M. & Gonzalez, Martin & Lopez-Espin, Jose J., 2018. "Using non-radial DEA to assess school efficiency in a cross-country perspective: An empirical analysis of OECD countries," Omega, Elsevier, vol. 79(C), pages 9-20.
    3. Kao, Chiang, 2022. "Closest targets in the slacks-based measure of efficiency for production units with multi-period data," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1042-1054.
    4. Ruiz, José L. & Sirvent, Inmaculada, 2019. "Performance evaluation through DEA benchmarking adjusted to goals," Omega, Elsevier, vol. 87(C), pages 150-157.
    5. Cook, Wade D. & Ruiz, José L. & Sirvent, Inmaculada & Zhu, Joe, 2017. "Within-group common benchmarking using DEA," European Journal of Operational Research, Elsevier, vol. 256(3), pages 901-910.
    6. Sekitani, Kazuyuki & Zhao, Yu, 2023. "Least-distance approach for efficiency analysis: A framework for nonlinear DEA models," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1296-1310.
    7. Aparicio, Juan & Cordero, Jose M. & Pastor, Jesus T., 2017. "The determination of the least distance to the strongly efficient frontier in Data Envelopment Analysis oriented models: Modelling and computational aspects," Omega, Elsevier, vol. 71(C), pages 1-10.
    8. Zhu, Qingyuan & Wu, Jie & Ji, Xiang & Li, Feng, 2018. "A simple MILP to determine closest targets in non-oriented DEA model satisfying strong monotonicity," Omega, Elsevier, vol. 79(C), pages 1-8.
    9. Le, Minh Hanh & Afsharian, Mohsen & Ahn, Heinz, 2021. "Inverse Frontier-based Benchmarking for Investigating the Efficiency and Achieving the Targets in the Vietnamese Education System," Omega, Elsevier, vol. 103(C).
    10. Javad Vakili & Hanieh Amirmoshiri & Rashed Khanjani Shiraz & Hirofumi Fukuyama, 2020. "A modified distance friction minimization approach in data envelopment analysis," Annals of Operations Research, Springer, vol. 288(2), pages 789-804, May.
    11. Juan Aparicio & Magdalena Kapelko & Juan F. Monge, 2020. "A Well-Defined Composite Indicator: An Application to Corporate Social Responsibility," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 299-323, July.
    12. Zhu, Qingyuan & Aparicio, Juan & Li, Feng & Wu, Jie & Kou, Gang, 2022. "Determining closest targets on the extended facet production possibility set in data envelopment analysis: Modeling and computational aspects," European Journal of Operational Research, Elsevier, vol. 296(3), pages 927-939.
    13. Ruiz, José L. & Sirvent, Inmaculada, 2016. "Common benchmarking and ranking of units with DEA," Omega, Elsevier, vol. 65(C), pages 1-9.
    14. Juan Aparicio & Jesus T. Pastor & Jose L. Sainz-Pardo & Fernando Vidal, 2020. "Estimating and decomposing overall inefficiency by determining the least distance to the strongly efficient frontier in data envelopment analysis," Operational Research, Springer, vol. 20(2), pages 747-770, June.
    15. J. Vakili & R. Sadighi Dizaji, 2021. "The closest strong efficient targets in the FDH technology: an enumeration method," Journal of Productivity Analysis, Springer, vol. 55(2), pages 91-105, April.
    16. Aparicio, Juan & Pastor, Jesus T., 2014. "Closest targets and strong monotonicity on the strongly efficient frontier in DEA," Omega, Elsevier, vol. 44(C), pages 51-57.
    17. González, Eduardo & Cárcaba, Ana & Ventura, Juan, 2015. "How car dealers adjust prices to reach the product efficiency frontier in the Spanish automobile market," Omega, Elsevier, vol. 51(C), pages 38-48.
    18. Fukuyama, Hirofumi & Matousek, Roman & Tzeremes, Nickolaos G., 2022. "Bank production with nonperforming loans: A minimum distance directional slack inefficiency approach," Omega, Elsevier, vol. 113(C).
    19. Ruiz, José L. & Segura, José V. & Sirvent, Inmaculada, 2015. "Benchmarking and target setting with expert preferences: An application to the evaluation of educational performance of Spanish universities," European Journal of Operational Research, Elsevier, vol. 242(2), pages 594-605.
    20. Lozano, Sebastián & Khezri, Somayeh, 2021. "Network DEA smallest improvement approach," Omega, Elsevier, vol. 98(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:bstrat:v:30:y:2021:i:7:p:2907-2921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-0836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.