IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v84y2022ics0038012122002282.html
   My bibliography  Save this article

A novel inverse DEA-R model with application in hospital efficiency

Author

Listed:
  • Ghiyasi, Mojtaba
  • Soltanifar, Mehdi
  • Sharafi, Hamid

Abstract

The inverse Data Envelopment Analysis (DEA) method is primarily used to analyze the changing relationship between the inputs and outputs of production units while preserving efficiency levels. This paper aims to perform an efficiency and post-efficiency analysis of 130 public hospitals in Iran. However, we faced with some hospital data that are only available in form of ratios. This motivates us to develop a novel and proper inverse DEA methodology capable of dealing with such cases. We develop the theoretical foundation of the inverse DEA-R model as a post-efficiency analysis approach. Both input-oriented and output-oriented inverse models are developed. In the end, we apply the proposed models for efficiency assessment and moreover inverse analysis of 130 public hospitals in Iran.

Suggested Citation

  • Ghiyasi, Mojtaba & Soltanifar, Mehdi & Sharafi, Hamid, 2022. "A novel inverse DEA-R model with application in hospital efficiency," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
  • Handle: RePEc:eee:soceps:v:84:y:2022:i:c:s0038012122002282
    DOI: 10.1016/j.seps.2022.101427
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012122002282
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2022.101427?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mojtaba Ghiyasi & Sahar Khoshfetrat, 2019. "Preserve the relative efficiency values: an inverse data envelopment analysis with imprecise data," International Journal of Procurement Management, Inderscience Enterprises Ltd, vol. 12(3), pages 243-257.
    2. Puig-Junoy, Jaume, 2000. "Partitioning input cost efficiency into its allocative and technical components: an empirical DEA application to hospitals," Socio-Economic Planning Sciences, Elsevier, vol. 34(3), pages 199-218, September.
    3. Khushalani, Jaya & Ozcan, Yasar A., 2017. "Are hospitals producing quality care efficiently? An analysis using Dynamic Network Data Envelopment Analysis (DEA)," Socio-Economic Planning Sciences, Elsevier, vol. 60(C), pages 15-23.
    4. M. Eyni & G. Tohidi & S. Mehrabeian, 2017. "Applying inverse DEA and cone constraint to sensitivity analysis of DMUs with undesirable inputs and outputs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(1), pages 34-40, January.
    5. Gholam R. Amin & Ali Emrouznejad & Said Gattoufi, 2017. "Modelling generalized firms’ restructuring using inverse DEA," Journal of Productivity Analysis, Springer, vol. 48(1), pages 51-61, August.
    6. Sebastian Kohl & Jan Schoenfelder & Andreas Fügener & Jens O. Brunner, 2019. "The use of Data Envelopment Analysis (DEA) in healthcare with a focus on hospitals," Health Care Management Science, Springer, vol. 22(2), pages 245-286, June.
    7. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    8. Ozren Despić & Mladen Despić & Joseph Paradi, 2007. "DEA-R: ratio-based comparative efficiency model, its mathematical relation to DEA and its use in applications," Journal of Productivity Analysis, Springer, vol. 28(1), pages 33-44, October.
    9. Lim, Dong-Joon, 2016. "Inverse DEA with frontier changes for new product target setting," European Journal of Operational Research, Elsevier, vol. 254(2), pages 510-516.
    10. Ali Emrouznejad & Guo-liang Yang & Gholam R. Amin, 2019. "A novel inverse DEA model with application to allocate the CO2 emissions quota to different regions in Chinese manufacturing industries," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(7), pages 1079-1090, July.
    11. See, Kok Fong & Md Hamzah, Nurhafiza & Yu, Ming-Miin, 2021. "Metafrontier efficiency analysis for hospital pharmacy services using dynamic network DEA framework," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    12. Wei, Quanling & Zhang, Jianzhong & Zhang, Xiangsun, 2000. "An inverse DEA model for inputs/outputs estimate," European Journal of Operational Research, Elsevier, vol. 121(1), pages 151-163, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Cai Wen & Yang, Yuanhui, 2023. "Appraisal of regional hospital efficiency and healthcare quality in China: Impacts of subsidies and marketization," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyin Hu & Jianshu Li & Xiaoya Li & Jinchuan Cui, 2020. "A Revised Inverse Data Envelopment Analysis Model Based on Radial Models," Mathematics, MDPI, vol. 8(5), pages 1-17, May.
    2. Gholam R. Amin & Mustapha Ibn Boamah, 2020. "A new inverse DEA cost efficiency model for estimating potential merger gains: a case of Canadian banks," Annals of Operations Research, Springer, vol. 295(1), pages 21-36, December.
    3. Moghaddas, Zohreh & Tosarkani, Babak Mohamadpour & Yousefi, Samuel, 2022. "Resource reallocation for improving sustainable supply chain performance: An inverse data envelopment analysis," International Journal of Production Economics, Elsevier, vol. 252(C).
    4. Chen, Kuan-Chen & Lin, Sun-Yuan & Yu, Ming-Miin, 2022. "Exploring the efficiency of hospital and pharmacy utilizations in Taiwan: An application of dynamic network data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    5. Wen-Chi Yang & Wen-Min Lu, 2023. "Achieving Net Zero—An Illustration of Carbon Emissions Reduction with A New Meta-Inverse DEA Approach," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
    6. Amin, Gholam R. & Ibn Boamah, Mustapha, 2023. "Modeling business partnerships: A data envelopment analysis approach," European Journal of Operational Research, Elsevier, vol. 305(1), pages 329-337.
    7. Azadi, Majid & Yousefi, Saeed & Farzipoor Saen, Reza & Shabanpour, Hadi & Jabeen, Fauzia, 2023. "Forecasting sustainability of healthcare supply chains using deep learning and network data envelopment analysis," Journal of Business Research, Elsevier, vol. 154(C).
    8. Sabri Boubaker & T.D.Q. Le & T. Ngo, 2023. "Managing Bank Performance under COVID-19: A Novel Inverse DEA Efficiency Approach," Post-Print hal-04435441, HAL.
    9. Marwa Hasni & Safa Bhar Layeb & Najla Omrane Aissaoui & Aymen Mannai, 2022. "Hybrid model for a cross‐department efficiency evaluation in healthcare systems," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(5), pages 1311-1329, July.
    10. Mustafa Jahangoshai Rezaee & Abuzar Karimdadi & Hamidreza Izadbakhsh, 2019. "Road map for progress and attractiveness of Iranian hospitals by integrating self-organizing map and context-dependent DEA," Health Care Management Science, Springer, vol. 22(3), pages 410-436, September.
    11. Andreas Dellnitz & Andreas Kleine & Wilhelm Rödder, 2018. "CCR or BCC: what if we are in the wrong model?," Journal of Business Economics, Springer, vol. 88(7), pages 831-850, September.
    12. Le, Minh Hanh & Afsharian, Mohsen & Ahn, Heinz, 2021. "Inverse Frontier-based Benchmarking for Investigating the Efficiency and Achieving the Targets in the Vietnamese Education System," Omega, Elsevier, vol. 103(C).
    13. Zhang, Jingxiao & Jin, Weixing & Yang, Guo-liang & Li, Hui & Ke, Yongjian & Philbin, Simon Patrick, 2021. "Optimizing regional allocation of CO2 emissions considering output under overall efficiency," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    14. Mohammad Khoveyni & Robabeh Eslami, 2022. "Merging two-stage series network structures: A DEA-based approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 273-302, March.
    15. Chin‐wei Huang & Hsiao‐Yin Chen, 2023. "Using nonradial metafrontier data envelopment analysis to evaluate the metatechnology and metafactor ratios for the Taiwanese hotel industry," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(4), pages 1904-1919, June.
    16. Ferreira, D.C. & Marques, R.C., 2019. "Do quality and access to hospital services impact on their technical efficiency?," Omega, Elsevier, vol. 86(C), pages 218-236.
    17. Annika Maren Schneider & Eva-Maria Oppel & Jonas Schreyögg, 2020. "Investigating the link between medical urgency and hospital efficiency – Insights from the German hospital market," Health Care Management Science, Springer, vol. 23(4), pages 649-660, December.
    18. Ricardo Ocaña-Riola & Carmen Pérez-Romero & Mª Isabel Ortega-Díaz & José Jesús Martín-Martín, 2021. "Multilevel Zero-One Inflated Beta Regression Model for the Analysis of the Relationship between Exogenous Health Variables and Technical Efficiency in the Spanish National Health System Hospitals," IJERPH, MDPI, vol. 18(19), pages 1-18, September.
    19. Yang Lin & Longzhong Yan & Ying-Ming Wang, 2019. "Performance Evaluation and Investment Analysis for Container Port Sustainable Development in China: An Inverse DEA Approach," Sustainability, MDPI, vol. 11(17), pages 1-13, August.
    20. Yun-Gi Hwang & Soohyun Park & Daecheol Kim, 2018. "Efficiency Analysis of Official Development Assistance Provided by Korea," Sustainability, MDPI, vol. 10(8), pages 1-13, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:84:y:2022:i:c:s0038012122002282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.