IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v252y2016i3p852-865.html
   My bibliography  Save this article

Complex multi-state systems modelled through marked Markovian arrival processes

Author

Listed:
  • Ruiz-Castro, Juan Eloy

Abstract

Complex multi-state warm standby systems subject to different types of failures and preventive maintenance are modelled by considering discrete marked Markovian arrival processes. The system is composed of K units, one online and the rest in warm standby and by an indefinite number of repairpersons, R. The online unit passes through several performance states, which are partitioned into two types: minor and major. This unit can fail due to wear or to external shock. In both cases of failures, the failure can be repairable or non-repairable. Warm standby units can only undergo repairable failures due to wear. Derived systems are modelled from the basic one according to the type of the failure; repairable or non-repairable, and preventive maintenance. When a unit undergoes a repairable failure, it goes to the repair facility for corrective repair, and if it is non-repairable, it is replaced by a new, identical one. Preventive maintenance is carried out in response to random inspections. When an inspection takes place, the online unit is observed and if the performance state is major, the unit is sent to the repair facility for preventive maintenance. Preventive maintenance and corrective repair times follow different distributions according to the type of failure. The systems are modelled in transient regime, relevant performance measures are obtained, and rewards and costs are calculated. All results are expressed in algorithmic form and implemented computationally with Matlab. A numerical example shows the versatility of the model presented.

Suggested Citation

  • Ruiz-Castro, Juan Eloy, 2016. "Complex multi-state systems modelled through marked Markovian arrival processes," European Journal of Operational Research, Elsevier, vol. 252(3), pages 852-865.
  • Handle: RePEc:eee:ejores:v:252:y:2016:i:3:p:852-865
    DOI: 10.1016/j.ejor.2016.02.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716300273
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.02.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E.J. Vanderperre & S.S. Makhanov, 2014. "Reliability analysis of a repairable duplex system," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(9), pages 1970-1977, September.
    2. Zhong, Chongquan & Jin, Haibo, 2014. "A novel optimal preventive maintenance policy for a cold standby system based on semi-Markov theory," European Journal of Operational Research, Elsevier, vol. 232(2), pages 405-411.
    3. Ruiz-Castro, Juan Eloy & Li, Quan-Lin, 2011. "Algorithm for a general discrete k-out-of-n: G system subject to several types of failure with an indefinite number of repairpersons," European Journal of Operational Research, Elsevier, vol. 211(1), pages 97-111, May.
    4. Editors, 2014. "International Journal of Systems Science," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(12), pages 1-1, December.
    5. Ruiz-Castro, Juan Eloy & Fernández-Villodre, Gemma, 2012. "A complex discrete warm standby system with loss of units," European Journal of Operational Research, Elsevier, vol. 218(2), pages 456-469.
    6. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2014. "Cold vs. hot standby mission operation cost minimization for 1-out-of-N systems," European Journal of Operational Research, Elsevier, vol. 234(1), pages 155-162.
    7. Wells, Charles E., 2014. "Reliability analysis of a single warm-standby system subject to repairable and nonrepairable failures," European Journal of Operational Research, Elsevier, vol. 235(1), pages 180-186.
    8. Toshio Nakagawa, 2005. "Maintenance Theory of Reliability," Springer Series in Reliability Engineering, Springer, number 978-1-84628-221-8, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Zhenglin & Parlikad, Ajith Kumar, 2020. "Predictive group maintenance for multi-system multi-component networks," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    2. Chen, Yiming & Liu, Yu & Jiang, Tao, 2021. "Optimal maintenance strategy for multi-state systems with single maintenance capacity and arbitrarily distributed maintenance time," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    3. Yonit Barron & Chananel Benshimol, 2024. "Emergency Supply Alternatives for a Storage Facility of a Repairable Multi-Component System," Mathematics, MDPI, vol. 12(17), pages 1-37, August.
    4. Wu, Hui & Li, Yan-Fu & Bérenguer, Christophe, 2020. "Optimal inspection and maintenance for a repairable k-out-of-n: G warm standby system," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    5. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2018. "Heterogeneous standby systems with shocks-driven preventive replacements," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1189-1197.
    6. Juan E. Ruiz-Castro & Christian Acal & Ana M. Aguilera & Juan B. Roldán, 2021. "A Complex Model via Phase-Type Distributions to Study Random Telegraph Noise in Resistive Memories," Mathematics, MDPI, vol. 9(4), pages 1-16, February.
    7. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "Mission abort and rescue for multistate systems operating under the Poisson process of shocks," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    8. Ruiz-Castro, Juan Eloy & Dawabsha, Mohammed & Alonso, Francisco Javier, 2018. "Discrete-time Markovian arrival processes to model multi-state complex systems with loss of units and an indeterminate variable number of repairpersons," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 114-127.
    9. Yousefi, Nooshin & Coit, David W. & Song, Sanling, 2020. "Reliability analysis of systems considering clusters of dependent degrading components," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    10. Juybari, Mohammad N. & Hamadani, Ali Zeinal & Ardakan, Mostafa Abouei, 2023. "Availability analysis and cost optimization of a repairable system with a mix of active and warm-standby components in a shock environment," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    11. Ruiz-Castro, Juan Eloy, 2020. "A complex multi-state k-out-of-n: G system with preventive maintenance and loss of units," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    12. Li, Yan & Cui, Lirong & Lin, Cong, 2017. "Modeling and analysis for multi-state systems with discrete-time Markov regime-switching," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 41-49.
    13. Chen, Wu-Lin & Wang, Kuo-Hsiung, 2018. "Reliability analysis of a retrial machine repair problem with warm standbys and a single server with N-policy," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 476-486.
    14. Yonit Barron, 2018. "Group maintenance policies for an R-out-of-N system with phase-type distribution," Annals of Operations Research, Springer, vol. 261(1), pages 79-105, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruiz-Castro, Juan Eloy & Dawabsha, Mohammed & Alonso, Francisco Javier, 2018. "Discrete-time Markovian arrival processes to model multi-state complex systems with loss of units and an indeterminate variable number of repairpersons," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 114-127.
    2. Juan Eloy Ruiz-Castro, 2015. "A preventive maintenance policy for a standby system subject to internal failures and external shocks with loss of units," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(9), pages 1600-1613, July.
    3. Ruiz-Castro, Juan Eloy, 2020. "A complex multi-state k-out-of-n: G system with preventive maintenance and loss of units," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    4. Amirhossain Chambari & Javad Sadeghi & Fakhri Bakhtiari & Reza Jahangard, 2016. "A note on a reliability redundancy allocation problem using a tuned parameter genetic algorithm," OPSEARCH, Springer;Operational Research Society of India, vol. 53(2), pages 426-442, June.
    5. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2018. "Optimizing availability of heterogeneous standby systems exposed to shocks," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 137-145.
    6. Yonit Barron, 2018. "Group maintenance policies for an R-out-of-N system with phase-type distribution," Annals of Operations Research, Springer, vol. 261(1), pages 79-105, February.
    7. R. K. Bhardwaj & Komaldeep Kaur & S. C. Malik, 2017. "Reliability indices of a redundant system with standby failure and arbitrary distribution for repair and replacement times," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 423-431, June.
    8. Zhang, Xiaohong & Zeng, Jianchao, 2017. "Joint optimization of condition-based opportunistic maintenance and spare parts provisioning policy in multiunit systems," European Journal of Operational Research, Elsevier, vol. 262(2), pages 479-498.
    9. Levitin, Gregory & Xing, Liudong & Peng, Sun & Dai, Yuanshun, 2015. "Optimal choice of standby modes in 1-out-of-N system with respect to mission reliability and cost," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 587-596.
    10. Fernández, Arturo J., 2015. "Optimum attributes component test plans for k-out-of-n:F Weibull systems using prior information," European Journal of Operational Research, Elsevier, vol. 240(3), pages 688-696.
    11. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2021. "Optimization of cyclic preventive replacement in homogeneous warm-standby system with reusable elements exposed to shocks," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    12. Nizar Mannai & Soufiane Gasmi, 2020. "Optimal design of k-out-of-n system under first and last replacement in reliability theory," Operational Research, Springer, vol. 20(3), pages 1353-1368, September.
    13. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2018. "Heterogeneous standby systems with shocks-driven preventive replacements," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1189-1197.
    14. Ruiz-Castro, Juan Eloy, 2016. "Markov counting and reward processes for analysing the performance of a complex system subject to random inspections," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 155-168.
    15. Kayedpour, Farjam & Amiri, Maghsoud & Rafizadeh, Mahmoud & Shahryari Nia, Arash, 2017. "Multi-objective redundancy allocation problem for a system with repairable components considering instantaneous availability and strategy selection," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 11-20.
    16. Wang, Guan Jun & Zhang, Yuan Lin, 2013. "Optimal repair–replacement policies for a system with two types of failures," European Journal of Operational Research, Elsevier, vol. 226(3), pages 500-506.
    17. Xiaojun Liang & Yinghui Tang, 2019. "The improvement upon the reliability of the k-out-of-n:F system with the repair rates differentiation policy," Operational Research, Springer, vol. 19(2), pages 479-500, June.
    18. Liu, Baoliang & Cui, Lirong & Wen, Yanqing & Shen, Jingyuan, 2015. "A cold standby repairable system with working vacations and vacation interruption following Markovian arrival process," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 1-8.
    19. Jia, Xiang & Chen, Hao & Cheng, Zhijun & Guo, Bo, 2016. "A comparison between two switching policies for two-unit standby system," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 109-118.
    20. Moina Ajmeri & Ahmad Ali, 2017. "Analytical design of modified Smith predictor for unstable second-order processes with time delay," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(8), pages 1671-1681, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:252:y:2016:i:3:p:852-865. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.