IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v226y2013i3p500-506.html
   My bibliography  Save this article

Optimal repair–replacement policies for a system with two types of failures

Author

Listed:
  • Wang, Guan Jun
  • Zhang, Yuan Lin

Abstract

In this paper, the optimal replacement problem is investigated for a system with two types of failures. One type of failure is repairable, which is conducted by a repairman when it occurs, and the other is unrepairable, which leads to a replacement of the system at once. The repair of the system is not “as good as new”. The consecutive operating times of the system after repair form a decreasing geometric process, while the repair times after failure are assumed to be independent and identically distributed. Replacement policy N is adopted, where N is the number of repairable failures. The system will be replaced at the Nth repairable failure or at the unrepairable failure, whichever occurs first. Two replacement models are considered, one is based on the limiting availability and the other based on the long-run average cost rate of the system. We give the explicit expressions for the limiting availability and the long-run average cost rate of the system under policy N, respectively. By maximizing the limiting availability A(N) and minimizing the long-run average cost rate C(N), we theoretically obtain the optimal replacement policies N∗ in both cases. Finally, some numerical simulations are presented to verify the theoretical results.

Suggested Citation

  • Wang, Guan Jun & Zhang, Yuan Lin, 2013. "Optimal repair–replacement policies for a system with two types of failures," European Journal of Operational Research, Elsevier, vol. 226(3), pages 500-506.
  • Handle: RePEc:eee:ejores:v:226:y:2013:i:3:p:500-506
    DOI: 10.1016/j.ejor.2012.11.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712009058
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.11.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Castro, I.T., 2009. "A model of imperfect preventive maintenance with dependent failure modes," European Journal of Operational Research, Elsevier, vol. 196(1), pages 217-224, July.
    2. Khac Tuan Huynh & Inma T. Castro & Anne Barros & Christophe Bérenguer, 2012. "Modeling age-based maintenance strategies with minimal repairs for systems subject to competing failure modes due to degradation and shocks," Post-Print hal-00790729, HAL.
    3. Hongzhou Wang & Hoang Pham, 2006. "Reliability and Optimal Maintenance," Springer Series in Reliability Engineering, Springer, number 978-1-84628-325-3, March.
    4. Maxim Finkelstein, 2008. "Failure Rate Modelling for Reliability and Risk," Springer Series in Reliability Engineering, Springer, number 978-1-84800-986-8, March.
    5. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    6. Zequeira, R.I. & Bérenguer, C., 2006. "Periodic imperfect preventive maintenance with two categories of competing failure modes," Reliability Engineering and System Safety, Elsevier, vol. 91(4), pages 460-468.
    7. Lam, Yeh & Zhang, Yuan Lin & Zheng, Yao Hui, 2002. "A geometric process equivalent model for a multistate degenerative system," European Journal of Operational Research, Elsevier, vol. 142(1), pages 21-29, October.
    8. Huynh, K.T. & Castro, I.T. & Barros, A. & Bérenguer, C., 2012. "Modeling age-based maintenance strategies with minimal repairs for systems subject to competing failure modes due to degradation and shocks," European Journal of Operational Research, Elsevier, vol. 218(1), pages 140-151.
    9. Lam, Yeh, 2007. "A geometric process maintenance model with preventive repair," European Journal of Operational Research, Elsevier, vol. 182(2), pages 806-819, October.
    10. Ruiz-Castro, Juan Eloy & Li, Quan-Lin, 2011. "Algorithm for a general discrete k-out-of-n: G system subject to several types of failure with an indefinite number of repairpersons," European Journal of Operational Research, Elsevier, vol. 211(1), pages 97-111, May.
    11. Toshio Nakagawa, 2005. "Maintenance Theory of Reliability," Springer Series in Reliability Engineering, Springer, number 978-1-84628-221-8, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miaomiao Yu & Yinghui Tang, 2024. "Analyze periodic inspection and replacement policy of a shock and wear model with phase-type inter-shock arrival times using roots method," Journal of Risk and Reliability, , vol. 238(2), pages 233-246, April.
    2. Safaei, Fatemeh & Ahmadi, Jafar & Balakrishnan, N., 2019. "A repair and replacement policy for repairable systems based on probability and mean of profits," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 143-152.
    3. Guan Jun Wang & Yuan Lin Zhang, 2016. "Optimal replacement policy for a two-dissimilar-component cold standby system with different repair actions," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(5), pages 1021-1031, April.
    4. Delia Montoro-Cazorla & Rafael Pérez-Ocón, 2022. "Optimizing Costs in a Reliability System under Markovian Arrival of Failures and Reposition by K -Policy Inspection," Mathematics, MDPI, vol. 10(11), pages 1-21, June.
    5. Arnold, Richard & Chukova, Stefanka & Hayakawa, Yu & Marshall, Sarah, 2020. "Geometric-Like Processes: An Overview and Some Reliability Applications," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    6. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    7. Cha, Ji Hwan, 2016. "New stochastic models for preventive maintenance and maintenance optimizationAuthor-Name: Lee, Hyunju," European Journal of Operational Research, Elsevier, vol. 255(1), pages 80-90.
    8. Shen, Jingyuan & Cui, Lirong & Ma, Yizhong, 2019. "Availability and optimal maintenance policy for systems degrading in dynamic environments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 133-143.
    9. Caiyun Niu & Jiang Jiang & Bingfeng Ge & Yingwu Chen, 2022. "Preventive maintenance model based on the renewal-geometric process," Journal of Risk and Reliability, , vol. 236(2), pages 348-356, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji Hwan Cha & Maxim Finkelstein & Gregory Levitin, 2017. "Bivariate preventive maintenance for repairable systems subject to random shocks," Journal of Risk and Reliability, , vol. 231(6), pages 643-653, December.
    2. Cha, Ji Hwan & Finkelstein, Maxim & Levitin, Gregory, 2018. "Bivariate preventive maintenance of systems with lifetimes dependent on a random shock process," European Journal of Operational Research, Elsevier, vol. 266(1), pages 122-134.
    3. Ji Hwan Cha & Maxim Finkelstein, 2020. "On optimal life extension for degrading systems," Journal of Risk and Reliability, , vol. 234(3), pages 487-495, June.
    4. Jingyi Liu & Yugang Zhang & Bifeng Song, 2019. "Reliability and maintenance modeling for competing failures with intermission considered," Journal of Risk and Reliability, , vol. 233(5), pages 898-907, October.
    5. Finkelstein, Maxim & Cha, Ji Hwan & Bedford, Tim, 2023. "Optimal preventive maintenance strategy for populations of systems that generate outputs," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    6. Juan Eloy Ruiz-Castro, 2015. "A preventive maintenance policy for a standby system subject to internal failures and external shocks with loss of units," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(9), pages 1600-1613, July.
    7. Ji Hwan Cha & Maxim Finkelstein, 2019. "Optimal preventive maintenance for systems having a continuous output and operating in a random environment," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 327-350, July.
    8. Maxim Finkelstein & Ji Hwan Cha & Amy Langston, 2023. "Termination versus operation extension for degrading systems," Journal of Risk and Reliability, , vol. 237(6), pages 1175-1185, December.
    9. Caballé, N.C. & Castro, I.T. & Pérez, C.J. & Lanza-Gutiérrez, J.M., 2015. "A condition-based maintenance of a dependent degradation-threshold-shock model in a system with multiple degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 98-109.
    10. Shafiee, Mahmood & Finkelstein, Maxim, 2015. "An optimal age-based group maintenance policy for multi-unit degrading systems," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 230-238.
    11. Meango, Toualith Jean-Marc & Ouali, Mohamed-Salah, 2020. "Failure interaction model based on extreme shock and Markov processes," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    12. Finkelstein, Maxim & Cha, Ji Hwan & Langston, Amy, 2023. "Improving classical optimal age-replacement policies for degrading items," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    13. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    14. Tanwar, Monika & Rai, Rajiv N. & Bolia, Nomesh, 2014. "Imperfect repair modeling using Kijima type generalized renewal process," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 24-31.
    15. Levitin, Gregory & Finkelstein, Maxim, 2019. "Optimal loading of elements in series systems exposed to external shocks," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    16. Shafiee, Mahmood & Finkelstein, Maxim & Bérenguer, Christophe, 2015. "An opportunistic condition-based maintenance policy for offshore wind turbine blades subjected to degradation and environmental shocks," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 463-471.
    17. Shafiee, Mahmood & Chukova, Stefanka, 2013. "Maintenance models in warranty: A literature review," European Journal of Operational Research, Elsevier, vol. 229(3), pages 561-572.
    18. Mahmood Shafiee & Maxim Finkelstein, 2015. "A proactive group maintenance policy for continuously monitored deteriorating systems: Application to offshore wind turbines," Journal of Risk and Reliability, , vol. 229(5), pages 373-384, October.
    19. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    20. Taghipour, Sharareh & Banjevic, Dragan & Jardine, Andrew K.S., 2010. "Periodic inspection optimization model for a complex repairable system," Reliability Engineering and System Safety, Elsevier, vol. 95(9), pages 944-952.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:226:y:2013:i:3:p:500-506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.