IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v35y1988i6p697-705.html
   My bibliography  Save this article

Determination of efficient points in multiple‐objective location problems

Author

Listed:
  • B. Pelegrin
  • F. R. Fernandez

Abstract

This article is devoted to an MCDM problem connected with locational analysis. The MCDM problem can be formulated so as to minimize the distance between a facility and a given set of points. The efficient points of this problem are candidates for optimal solutions to many location problems. We propose an algorithm to find all efficient points when distance is measured by any polyhedral norm.

Suggested Citation

  • B. Pelegrin & F. R. Fernandez, 1988. "Determination of efficient points in multiple‐objective location problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(6), pages 697-705, December.
  • Handle: RePEc:wly:navres:v:35:y:1988:i:6:p:697-705
    DOI: 10.1002/1520-6750(198812)35:63.0.CO;2-8
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/1520-6750(198812)35:63.0.CO;2-8
    Download Restriction: no

    File URL: https://libkey.io/10.1002/1520-6750(198812)35:63.0.CO;2-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Juel, Henrik & Love, Robert F., 1983. "Hull properties in location problems," European Journal of Operational Research, Elsevier, vol. 12(3), pages 262-265, March.
    2. J.-F. Thisse & J. E. Ward & R. E. Wendell, 1984. "Some Properties of Location Problems with Block and Round Norms," Operations Research, INFORMS, vol. 32(6), pages 1309-1327, December.
    3. James E. Ward & Richard E. Wendell, 1985. "Using Block Norms for Location Modeling," Operations Research, INFORMS, vol. 33(5), pages 1074-1090, October.
    4. Pelegrin, Blas & Michelot, Christian & Plastria, Frank, 1985. "On the uniqueness of optimal solutions in continuous location theory," European Journal of Operational Research, Elsevier, vol. 20(3), pages 327-331, June.
    5. Richard E. Wendell & Arthur P. Hurter, 1973. "Location Theory, Dominance, and Convexity," Operations Research, INFORMS, vol. 21(1), pages 314-320, February.
    6. Chalmet, Luc G. & Francis, Richard L. & Kolen, Antoon, 1981. "Finding efficient solutions for rectilinear distance location problems efficiently," European Journal of Operational Research, Elsevier, vol. 6(2), pages 117-124, February.
    7. Francis, Richard L. & McGinnis, Leon F. & White, John A., 1983. "Locational analysis," European Journal of Operational Research, Elsevier, vol. 12(3), pages 220-252, March.
    8. Plastria, F., 1984. "Localization in single facility location," European Journal of Operational Research, Elsevier, vol. 18(2), pages 215-219, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefan Nickel & Justo Puerto & Antonio M. Rodriguez-Chia, 2003. "An Approach to Location Models Involving Sets as Existing Facilities," Mathematics of Operations Research, INFORMS, vol. 28(4), pages 693-715, November.
    2. M. Akyüz & İ. Altınel & Temel Öncan, 2014. "Location and allocation based branch and bound algorithms for the capacitated multi-facility Weber problem," Annals of Operations Research, Springer, vol. 222(1), pages 45-71, November.
    3. E. Carrizosa & J. B. G. Frenk, 1998. "Dominating Sets for Convex Functions with Some Applications," Journal of Optimization Theory and Applications, Springer, vol. 96(2), pages 281-295, February.
    4. Carrizosa, E. & Frenk, J.B.G., 1996. "Dominating Sets for Convex Functions with some Applications," Econometric Institute Research Papers EI 9657-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. M. Hakan Akyüz & Temel Öncan & İ. Kuban Altınel, 2019. "Branch and bound algorithms for solving the multi-commodity capacitated multi-facility Weber problem," Annals of Operations Research, Springer, vol. 279(1), pages 1-42, August.
    6. Plastria, Frank, 2016. "How bad can the centroid be?," European Journal of Operational Research, Elsevier, vol. 252(1), pages 98-102.
    7. Hamacher, H. W. & Nickel, S., 1996. "Multicriteria planar location problems," European Journal of Operational Research, Elsevier, vol. 94(1), pages 66-86, October.
    8. Frank Plastria, 2009. "Asymmetric distances, semidirected networks and majority in Fermat–Weber problems," Annals of Operations Research, Springer, vol. 167(1), pages 121-155, March.
    9. H Younies & G O Wesolowsky, 2007. "Planar maximal covering location problem under block norm distance measure," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(6), pages 740-750, June.
    10. G. Wanka, 2000. "Multiobjective Control Approximation Problems: Duality and Optimality," Journal of Optimization Theory and Applications, Springer, vol. 105(2), pages 457-475, May.
    11. Tammy Drezner & Zvi Drezner, 2019. "Cooperative Cover of Uniform Demand," Networks and Spatial Economics, Springer, vol. 19(3), pages 819-831, September.
    12. Emilio Priego & Francisco Fernández García, 1993. "A polygonal upper bound for the efficient set for single-facility location problems with mixed norms," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 1(1), pages 107-116, December.
    13. Carrizosa, Emilio & Rodriguez-Chia, Antonio M., 1997. "Weber problems with alternative transportation systems," European Journal of Operational Research, Elsevier, vol. 97(1), pages 87-93, February.
    14. Frank Plastria & Tom Blockmans, 2015. "Multidimensional Theoretic Consensus Reachability: The Impact of Distance Selection and Issue Saliences," Group Decision and Negotiation, Springer, vol. 24(1), pages 1-44, January.
    15. Alzorba, Shaghaf & Günther, Christian & Popovici, Nicolae & Tammer, Christiane, 2017. "A new algorithm for solving planar multiobjective location problems involving the Manhattan norm," European Journal of Operational Research, Elsevier, vol. 258(1), pages 35-46.
    16. N Aras & M Orbay & I K Altinel, 2008. "Efficient heuristics for the rectilinear distance capacitated multi-facility Weber problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(1), pages 64-79, January.
    17. Frank Plastria, 2020. "On the Structure of the Weakly Efficient Set for Quasiconvex Vector Minimization," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 547-564, February.
    18. Zvi Drezner & Mozart B. C. Menezes, 2016. "The wisdom of voters: evaluating the Weber objective in the plane at the Condorcet solution," Annals of Operations Research, Springer, vol. 246(1), pages 205-226, November.
    19. Canos, M. J. & Ivorra, C. & Liern, V., 1999. "An exact algorithm for the fuzzy p-median problem," European Journal of Operational Research, Elsevier, vol. 116(1), pages 80-86, July.
    20. Avella, P. & Benati, S. & Canovas Martinez, L. & Dalby, K. & Di Girolamo, D. & Dimitrijevic, B. & Ghiani, G. & Giannikos, I. & Guttmann, N. & Hultberg, T. H. & Fliege, J. & Marin, A. & Munoz Marquez, , 1998. "Some personal views on the current state and the future of locational analysis," European Journal of Operational Research, Elsevier, vol. 104(2), pages 269-287, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:35:y:1988:i:6:p:697-705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.