A probability-mapping algorithm for calibrating the posterior probabilities: A direct marketing application
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Baumgartner, Bernhard & Hruschka, Harald, 2005. "Allocation of catalogs to collective customers based on semiparametric response models," European Journal of Operational Research, Elsevier, vol. 162(3), pages 839-849, May.
- Lee, Hyoung-joo & Shin, Hyunjung & Hwang, Seong-seob & Cho, Sungzoon & MacLachlan, Douglas, 2010. "Semi-Supervised Response Modeling," Journal of Interactive Marketing, Elsevier, vol. 24(1), pages 42-54.
- Martens, David & Baesens, Bart & Van Gestel, Tony & Vanthienen, Jan, 2007. "Comprehensible credit scoring models using rule extraction from support vector machines," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1466-1476, December.
- S. N. Wood, 2000. "Modelling and smoothing parameter estimation with multiple quadratic penalties," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 413-428.
- Kim, Hong Sik & Sohn, So Young, 2010. "Support vector machines for default prediction of SMEs based on technology credit," European Journal of Operational Research, Elsevier, vol. 201(3), pages 838-846, March.
- Hruschka, Harald, 2010. "Considering endogeneity for optimal catalog allocation in direct marketing," European Journal of Operational Research, Elsevier, vol. 206(1), pages 239-247, October.
- Simon N. Wood, 2004. "Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 673-686, January.
- Piersma, Nanda & Jonker, Jedid-Jah, 2004. "Determining the optimal direct mailing frequency," European Journal of Operational Research, Elsevier, vol. 158(1), pages 173-182, October.
- Bose, Indranil & Chen, Xi, 2009. "Quantitative models for direct marketing: A review from systems perspective," European Journal of Operational Research, Elsevier, vol. 195(1), pages 1-16, May.
- Paleologo, Giuseppe & Elisseeff, André & Antonini, Gianluca, 2010. "Subagging for credit scoring models," European Journal of Operational Research, Elsevier, vol. 201(2), pages 490-499, March.
- Crone, Sven F. & Lessmann, Stefan & Stahlbock, Robert, 2006. "The impact of preprocessing on data mining: An evaluation of classifier sensitivity in direct marketing," European Journal of Operational Research, Elsevier, vol. 173(3), pages 781-800, September.
- Simon N. Wood, 2008. "Fast stable direct fitting and smoothness selection for generalized additive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(3), pages 495-518, July.
- D Martens & T Van Gestel & M De Backer & R Haesen & J Vanthienen & B Baesens, 2010. "Credit rating prediction using Ant Colony Optimization," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 561-573, April.
- Baesens, Bart & Viaene, Stijn & Van den Poel, Dirk & Vanthienen, Jan & Dedene, Guido, 2002. "Bayesian neural network learning for repeat purchase modelling in direct marketing," European Journal of Operational Research, Elsevier, vol. 138(1), pages 191-211, April.
- Romero Morales, Dolores & Wang, Jingbo, 2010. "Forecasting cancellation rates for services booking revenue management using data mining," European Journal of Operational Research, Elsevier, vol. 202(2), pages 554-562, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- M. Ballings & D. Van Den Poel & E. Verhagen, 2013. "Evaluating the Added Value of Pictorial Data for Customer Churn Prediction," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 13/869, Ghent University, Faculty of Economics and Business Administration.
- Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
- Somayeh Moazeni & Boris Defourny & Monika J. Wilczak, 2020. "Sequential Learning in Designing Marketing Campaigns for Market Entry," Management Science, INFORMS, vol. 66(9), pages 4226-4245, September.
- Lessmann, Stefan & Coussement, Kristof & De Bock, Koen W. & Haupt, Johannes, 2018. "Targeting customers for profit: An ensemble learning framework to support marketing decision making," IRTG 1792 Discussion Papers 2018-012, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
- De Bock, Koen W. & Coussement, Kristof & Caigny, Arno De & Słowiński, Roman & Baesens, Bart & Boute, Robert N. & Choi, Tsan-Ming & Delen, Dursun & Kraus, Mathias & Lessmann, Stefan & Maldonado, Sebast, 2024. "Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda," European Journal of Operational Research, Elsevier, vol. 317(2), pages 249-272.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fan, Zhi-Ping & Sun, Minghe, 2015. "Behavior-aware user response modeling in social media: Learning from diverse heterogeneous dataAuthor-Name: Chen, Zhen-Yu," European Journal of Operational Research, Elsevier, vol. 241(2), pages 422-434.
- Bose, Indranil & Chen, Xi, 2009. "Quantitative models for direct marketing: A review from systems perspective," European Journal of Operational Research, Elsevier, vol. 195(1), pages 1-16, May.
- Stefan Lessmann & Stefan Voß, 2010. "Customer-Centric Decision Support," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 2(2), pages 79-93, April.
- Lessmann, Stefan & Voß, Stefan, 2009. "A reference model for customer-centric data mining with support vector machines," European Journal of Operational Research, Elsevier, vol. 199(2), pages 520-530, December.
- Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014.
"Modeling structural change in the European metropolitan areas during the process of economic integration,"
Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
- Christian Longhi & Antonio Musolesi & Catherine Baumont, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Post-Print halshs-01228053, HAL.
- Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.
- Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
- K. W. De Bock & D. Van Den Poel, 2012. "Reconciling Performance and Interpretability in Customer Churn Prediction using Ensemble Learning based on Generalized Additive Models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/805, Ghent University, Faculty of Economics and Business Administration.
- Musolesi Antonio & Mazzanti Massimiliano, 2014.
"Nonlinearity, heterogeneity and unobserved effects in the carbon dioxide emissions-economic development relation for advanced countries,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(5), pages 521-541, December.
- Mazzanti, M. & Musolesi, A., 2013. "Nonlinearity, heterogeneity and unobserved effects in the carbon dioxide emissions-economic development relation for advanced countries," Working Papers 2013-08, Grenoble Applied Economics Laboratory (GAEL).
- Antonio Musolesi & Massimiliano Mazzanti, 2014. "Nonlinearity, heterogeneity and unobserved effects in the carbon dioxide emissions-economic developement relation for advanced countries," Post-Print hal-01123027, HAL.
- Massimiliano Mazzanti & Antonio Musolesi, 2014. "Nonlinearity, heterogeneity and unobserved effects in the carbon dioxide emissions-economic development relation for advanced countries," SEEDS Working Papers 2214, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Aug 2014.
- Parisa Golbayani & Ionuc{t} Florescu & Rupak Chatterjee, 2020. "A comparative study of forecasting Corporate Credit Ratings using Neural Networks, Support Vector Machines, and Decision Trees," Papers 2007.06617, arXiv.org.
- Sylvie Charlot & Riccardo Crescenzi & Antonio Musolesi, 2014. "Augmented and Unconstrained: revisiting the Regional Knowledge Production Function," SEEDS Working Papers 2414, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Aug 2014.
- Nadja Klein & Michel Denuit & Stefan Lang & Thomas Kneib, 2013. "Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape," Working Papers 2013-24, Faculty of Economics and Statistics, Universität Innsbruck.
- Schröder, Nadine & Hruschka, Harald, 2016. "Investigating the effects of mailing variables and endogeneity on mailing decisions," European Journal of Operational Research, Elsevier, vol. 250(2), pages 579-589.
- Takuma Yoshida, 2016. "Asymptotics and smoothing parameter selection for penalized spline regression with various loss functions," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(4), pages 278-303, November.
- Mazzanti, Massimiliano & Musolesi, Antonio, 2013.
"Nonlinearity, Heterogeneity and Unobserved Effects in the CO2-income Relation for Advanced Countries,"
Climate Change and Sustainable Development
162374, Fondazione Eni Enrico Mattei (FEEM).
- Massimiliano Mazzanti & Antonio Musolesi, 2013. "Nonlinearity, Heterogeneity and Unobserved Effects in the CO2-income Relation for Advanced Countries," Working Papers 2013.91, Fondazione Eni Enrico Mattei.
- Klein, Nadja & Denuit, Michel & Lang, Stefan & Kneib, Thomas, 2013. "Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape," LIDAM Discussion Papers ISBA 2013045, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Golbayani, Parisa & Florescu, Ionuţ & Chatterjee, Rupak, 2020. "A comparative study of forecasting corporate credit ratings using neural networks, support vector machines, and decision trees," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
- Davidescu Adriana AnaMaria & Agafiței Marina-Diana & Strat Vasile Alecsandru & Dima Alina Mihaela, 2024. "Mapping the Landscape: A Bibliometric Analysis of Rating Agencies in the Era of Artificial Intelligence and Machine Learning," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 67-85.
- Xue, Yuan & Yin, Xiangrong & Jiang, Xiaolin, 2016. "Ensemble sufficient dimension folding methods for analyzing matrix-valued data," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 193-205.
- Coussement, Kristof & De Bock, Koen W., 2013.
"Customer churn prediction in the online gambling industry: The beneficial effect of ensemble learning,"
Journal of Business Research, Elsevier, vol. 66(9), pages 1629-1636.
- K. Coussement & K.W. de Bock, 2013. "Customer Churn Prediction in the Online Gambling Industry: The Beneficial Effect of Ensemble Learning," Post-Print hal-00788063, HAL.
More about this item
Keywords
Data mining Decision support systems Direct marketing Response modeling Calibration;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:214:y:2011:i:3:p:732-738. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.