IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v217y2012i3p673-678.html
   My bibliography  Save this article

Monte Carlo analysis of estimation methods for the prediction of customer response patterns in direct marketing

Author

Listed:
  • Chun, Young H.

Abstract

In direct marketing, customers are usually asked to take a specific action, and their responses are recorded over time and stored in a database. Based on the response data, we can estimate the number of customers who will ultimately respond, the number of responses anticipated to receive by a certain period of time, and the like. The goal of this article is to derive and propose several estimation methods and compare their performances in a Monte Carlo simulation. The response patterns can be described by a simple geometric function, which relates the number of responses to elapsed time. The “maximum likelihood” estimator appears to be the most effective method of estimating the parameters of this function. As we have more sample observations, the maximum likelihood estimates also converge to the true parameter values rapidly.

Suggested Citation

  • Chun, Young H., 2012. "Monte Carlo analysis of estimation methods for the prediction of customer response patterns in direct marketing," European Journal of Operational Research, Elsevier, vol. 217(3), pages 673-678.
  • Handle: RePEc:eee:ejores:v:217:y:2012:i:3:p:673-678
    DOI: 10.1016/j.ejor.2011.10.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221711009076
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2011.10.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Douglas G. Bonett & J. Arthur Woodward, 1994. "Sequential Defect Removal Sampling," Management Science, INFORMS, vol. 40(7), pages 898-902, July.
    2. Nadarajah, Saralees & Kotz, Samuel, 2009. "Models for purchase frequency," European Journal of Operational Research, Elsevier, vol. 192(3), pages 1014-1026, February.
    3. Wagner, Udo & Taudes, Alfred, 1987. "Stochastic models of consumer behaviour," European Journal of Operational Research, Elsevier, vol. 29(1), pages 1-23, April.
    4. Sim, S. H., 1988. "The reliability of a test procedure for identifying defective components," European Journal of Operational Research, Elsevier, vol. 34(3), pages 345-350, March.
    5. H Shore & D Benson-Karhi, 2007. "Forecasting S-shaped diffusion processes via response modelling methodology," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(6), pages 720-728, June.
    6. Chun, Young H. & Sumichrast, Robert T., 2007. "Bayesian inspection model with the negative binomial prior in the presence of inspection errors," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1188-1202, November.
    7. Bijvank, Marco & Vis, Iris F.A., 2011. "Lost-sales inventory theory: A review," European Journal of Operational Research, Elsevier, vol. 215(1), pages 1-13, November.
    8. Islam, Towhidul & Meade, Nigel, 2000. "Modelling diffusion and replacement," European Journal of Operational Research, Elsevier, vol. 125(3), pages 551-570, September.
    9. Young H. Chun, 2008. "Bayesian Analysis of the Sequential Inspection Plan via the Gibbs Sampler," Operations Research, INFORMS, vol. 56(1), pages 235-246, February.
    10. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
    11. Gottardi, Giorgio & Scarso, Enrico, 1994. "Diffusion models in forecasting: A comparison with the Box-Jenkins approach," European Journal of Operational Research, Elsevier, vol. 75(3), pages 600-616, June.
    12. Bose, Indranil & Chen, Xi, 2009. "Quantitative models for direct marketing: A review from systems perspective," European Journal of Operational Research, Elsevier, vol. 195(1), pages 1-16, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schröder, Nadine & Hruschka, Harald, 2016. "Investigating the effects of mailing variables and endogeneity on mailing decisions," European Journal of Operational Research, Elsevier, vol. 250(2), pages 579-589.
    2. Konstantin Kogan & Avi Herbon & Beatrice Venturi, 2020. "Direct marketing of an event under hazards of customer saturation and forgetting," Annals of Operations Research, Springer, vol. 295(1), pages 207-227, December.
    3. Somayeh Moazeni & Boris Defourny & Monika J. Wilczak, 2020. "Sequential Learning in Designing Marketing Campaigns for Market Entry," Management Science, INFORMS, vol. 66(9), pages 4226-4245, September.
    4. Gang Chen & Shuaiyong Xiao & Chenghong Zhang & Huimin Zhao, 2023. "A Theory-Driven Deep Learning Method for Voice Chat–Based Customer Response Prediction," Information Systems Research, INFORMS, vol. 34(4), pages 1513-1532, December.
    5. Fernández, Arturo J., 2012. "Minimizing the area of a Pareto confidence region," European Journal of Operational Research, Elsevier, vol. 221(1), pages 205-212.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chun, Young H., 2016. "Designing repetitive screening procedures with imperfect inspections: An empirical Bayes approach," European Journal of Operational Research, Elsevier, vol. 253(3), pages 639-647.
    2. Tsionas, Mike G., 2021. "Bayesian forecasting with the structural damped trend model," International Journal of Production Economics, Elsevier, vol. 234(C).
    3. Young H. Chun, 2008. "Bayesian Analysis of the Sequential Inspection Plan via the Gibbs Sampler," Operations Research, INFORMS, vol. 56(1), pages 235-246, February.
    4. Bo Dai & Fenfen Li, 2021. "Joint Inventory Replenishment Planning of an E-Commerce Distribution System with Distribution Centers at Producers’ Locations," Logistics, MDPI, vol. 5(3), pages 1-14, July.
    5. Ramanathan, Usha & Muyldermans, Luc, 2010. "Identifying demand factors for promotional planning and forecasting: A case of a soft drink company in the UK," International Journal of Production Economics, Elsevier, vol. 128(2), pages 538-545, December.
    6. Mercedes Esteban-Bravo & Jose M. Vidal-Sanz & Gökhan Yildirim, 2014. "Valuing Customer Portfolios with Endogenous Mass and Direct Marketing Interventions Using a Stochastic Dynamic Programming Decomposition," Marketing Science, INFORMS, vol. 33(5), pages 621-640, September.
    7. Yonit Barron & Dror Hermel, 2017. "Shortage decision policies for a fluid production model with MAP arrivals," International Journal of Production Research, Taylor & Francis Journals, vol. 55(14), pages 3946-3969, July.
    8. Michael Löffler & Reinhold Decker, 2012. "Identifikation und praktische Nutzung von Mustern des Aufwärtskonsums," Schmalenbach Journal of Business Research, Springer, vol. 64(7), pages 722-746, November.
    9. Banerjee, Nilabhra & Morton, Alec & Akartunalı, Kerem, 2020. "Passenger demand forecasting in scheduled transportation," European Journal of Operational Research, Elsevier, vol. 286(3), pages 797-810.
    10. Kivi, Antero & Smura, Timo & Töyli, Juuso, 2012. "Technology product evolution and the diffusion of new product features," Technological Forecasting and Social Change, Elsevier, vol. 79(1), pages 107-126.
    11. Linwei Xin & David A. Goldberg, 2016. "Optimality Gap of Constant-Order Policies Decays Exponentially in the Lead Time for Lost Sales Models," Operations Research, INFORMS, vol. 64(6), pages 1556-1565, December.
    12. Todor Krastevich, 2013. "Using Predictive Modeling to Improve Direct Marketing Performance," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 3, pages 25-55.
    13. Bin Shen & Hau-Ling Chan, 2017. "Forecast Information Sharing for Managing Supply Chains in the Big Data Era: Recent Development and Future Research," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(01), pages 1-26, February.
    14. Pennings, Clint L.P. & van Dalen, Jan & Rook, Laurens, 2019. "Coordinating judgmental forecasting: Coping with intentional biases," Omega, Elsevier, vol. 87(C), pages 46-56.
    15. Salinas, David & Flunkert, Valentin & Gasthaus, Jan & Januschowski, Tim, 2020. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1181-1191.
    16. Adam Diamant & Joseph Milner & Fayez Quereshy & Bo Xu, 2018. "Inventory management of reusable surgical supplies," Health Care Management Science, Springer, vol. 21(3), pages 439-459, September.
    17. Babai, M.Z. & Boylan, J.E. & Syntetos, A.A. & Ali, M.M., 2016. "Reduction of the value of information sharing as demand becomes strongly auto-correlated," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 130-135.
    18. Pauls-Worm, Karin G.J. & Hendrix, Eligius M.T. & Alcoba, Alejandro G. & Haijema, René, 2016. "Order quantities for perishable inventory control with non-stationary demand and a fill rate constraint," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 238-246.
    19. Soopramanien, Didier & Hong Juan, Liu, 2010. "The importance of understanding the exchange context when developing a decision support tool to target prospective customers of business insurance," Journal of Retailing and Consumer Services, Elsevier, vol. 17(4), pages 306-312.
    20. M Günther & C Stummer & L M Wakolbinger & M Wildpaner, 2011. "An agent-based simulation approach for the new product diffusion of a novel biomass fuel," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 12-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:217:y:2012:i:3:p:673-678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.