IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v197y2009i2p482-491.html
   My bibliography  Save this article

A study of heuristic combinations for hyper-heuristic systems for the uncapacitated examination timetabling problem

Author

Listed:
  • Pillay, N.
  • Banzhaf, W.

Abstract

Research in the domain of examination timetabling is moving towards developing methods that generalise well over a range of problems. This is achieved by implementing hyper-heuristic systems to find the best heuristic or heuristic combination to allocate examinations when constructing a timetable for a problem. Heuristic combinations usually take the form of a list of low-level heuristics that are applied sequentially. This study proposes an alternative representation for heuristic combinations, namely, a hierarchical combination of heuristics. Furthermore, the heuristics in each combination are applied simultaneously rather than sequentially. The study also introduces a new low-level heuristic, namely, highest cost. A set of heuristic combinations of this format have been tested on the 13 Carter benchmarks. The quality of the examination timetables induced using these combinations are comparable to, and in some cases better than, those produced by hyper-heuristic systems combining and applying heuristic combinations sequentially.

Suggested Citation

  • Pillay, N. & Banzhaf, W., 2009. "A study of heuristic combinations for hyper-heuristic systems for the uncapacitated examination timetabling problem," European Journal of Operational Research, Elsevier, vol. 197(2), pages 482-491, September.
  • Handle: RePEc:eee:ejores:v:197:y:2009:i:2:p:482-491
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00563-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Burke, Edmund Kieran & Petrovic, Sanja, 2002. "Recent research directions in automated timetabling," European Journal of Operational Research, Elsevier, vol. 140(2), pages 266-280, July.
    2. Massimiliano Caramia & Paolo Dell'Olmo & Giuseppe F. Italiano, 2008. "Novel Local-Search-Based Approaches to University Examination Timetabling," INFORMS Journal on Computing, INFORMS, vol. 20(1), pages 86-99, February.
    3. Burke, Edmund K. & McCollum, Barry & Meisels, Amnon & Petrovic, Sanja & Qu, Rong, 2007. "A graph-based hyper-heuristic for educational timetabling problems," European Journal of Operational Research, Elsevier, vol. 176(1), pages 177-192, January.
    4. E.K. Burke & J.P. Newall, 2004. "Solving Examination Timetabling Problems through Adaption of Heuristic Orderings," Annals of Operations Research, Springer, vol. 129(1), pages 107-134, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Álvaro García-Sánchez & Araceli Hernández & Eduardo Caro & Gonzalo Jiménez, 2019. "Universidad Politécnica de Madrid Uses Integer Programming for Scheduling Weekly Assessment Activities," Interfaces, INFORMS, vol. 49(2), pages 104-116, March.
    2. Johnes, Jill, 2015. "Operational Research in education," European Journal of Operational Research, Elsevier, vol. 243(3), pages 683-696.
    3. Nelishia Pillay, 2016. "A review of hyper-heuristics for educational timetabling," Annals of Operations Research, Springer, vol. 239(1), pages 3-38, April.
    4. Zeren, Bahadır & Özcan, Ender & Deveci, Muhammet, 2024. "An adaptive greedy heuristic for large scale airline crew pairing problems," Journal of Air Transport Management, Elsevier, vol. 114(C).
    5. Lagos, Felipe & Pereira, Jordi, 2024. "Multi-armed bandit-based hyper-heuristics for combinatorial optimization problems," European Journal of Operational Research, Elsevier, vol. 312(1), pages 70-91.
    6. Kheiri, Ahmed & Özcan, Ender, 2016. "An iterated multi-stage selection hyper-heuristic," European Journal of Operational Research, Elsevier, vol. 250(1), pages 77-90.
    7. Syariza Abdul-Rahman & Edmund Burke & Andrzej Bargiela & Barry McCollum & Ender Özcan, 2014. "A constructive approach to examination timetabling based on adaptive decomposition and ordering," Annals of Operations Research, Springer, vol. 218(1), pages 3-21, July.
    8. Kahar, M.N.M. & Kendall, G., 2010. "The examination timetabling problem at Universiti Malaysia Pahang: Comparison of a constructive heuristic with an existing software solution," European Journal of Operational Research, Elsevier, vol. 207(2), pages 557-565, December.
    9. Mohammed Al-Betar & Ahamad Khader & Iyad Doush, 2014. "Memetic techniques for examination timetabling," Annals of Operations Research, Springer, vol. 218(1), pages 23-50, July.
    10. Edmund Burke & Rong Qu & Amr Soghier, 2014. "Adaptive selection of heuristics for improving exam timetables," Annals of Operations Research, Springer, vol. 218(1), pages 129-145, July.
    11. Nelishia Pillay, 2014. "A survey of school timetabling research," Annals of Operations Research, Springer, vol. 218(1), pages 261-293, July.
    12. Aslan, Ayse & Bakir, Ilke & Vis, Iris F.A., 2020. "A dynamic thompson sampling hyper-heuristic framework for learning activity planning in personalized learning," European Journal of Operational Research, Elsevier, vol. 286(2), pages 673-688.
    13. Saeedeh Bazari & Alireza Pooya & Omid Soleimani Fard & Pardis Roozkhosh, 2023. "Modeling and solving the problem of scheduling university exams in terms of new constraints on the conflicts of professors' exams and the concurrence of exams with common questions," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 877-915, June.
    14. Alejandro Cataldo & Juan-Carlos Ferrer & Jaime Miranda & Pablo A. Rey & Antoine Sauré, 2017. "An integer programming approach to curriculum-based examination timetabling," Annals of Operations Research, Springer, vol. 258(2), pages 369-393, November.
    15. T. Godwin, 2022. "Obtaining quality business school examination timetable under heterogeneous elective selections through surrogacy," OPSEARCH, Springer;Operational Research Society of India, vol. 59(3), pages 1055-1093, September.
    16. Abdul Rahman, Syariza & Bargiela, Andrzej & Burke, Edmund K. & Özcan, Ender & McCollum, Barry & McMullan, Paul, 2014. "Adaptive linear combination of heuristic orderings in constructing examination timetables," European Journal of Operational Research, Elsevier, vol. 232(2), pages 287-297.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R Qu & E K Burke, 2009. "Hybridizations within a graph-based hyper-heuristic framework for university timetabling problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(9), pages 1273-1285, September.
    2. Edmund Burke & Graham Kendall & Mustafa Mısır & Ender Özcan, 2012. "Monte Carlo hyper-heuristics for examination timetabling," Annals of Operations Research, Springer, vol. 196(1), pages 73-90, July.
    3. Qu, Rong & Burke, Edmund K. & McCollum, Barry, 2009. "Adaptive automated construction of hybrid heuristics for exam timetabling and graph colouring problems," European Journal of Operational Research, Elsevier, vol. 198(2), pages 392-404, October.
    4. Edmund K. Burke & Yuri Bykov, 2016. "An Adaptive Flex-Deluge Approach to University Exam Timetabling," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 781-794, November.
    5. Christine Mumford, 2010. "A multiobjective framework for heavily constrained examination timetabling problems," Annals of Operations Research, Springer, vol. 180(1), pages 3-31, November.
    6. Mohammed Al-Betar & Ahamad Khader & Iyad Doush, 2014. "Memetic techniques for examination timetabling," Annals of Operations Research, Springer, vol. 218(1), pages 23-50, July.
    7. Thepphakorn, Thatchai & Pongcharoen, Pupong & Hicks, Chris, 2014. "An ant colony based timetabling tool," International Journal of Production Economics, Elsevier, vol. 149(C), pages 131-144.
    8. Abdul Rahman, Syariza & Bargiela, Andrzej & Burke, Edmund K. & Özcan, Ender & McCollum, Barry & McMullan, Paul, 2014. "Adaptive linear combination of heuristic orderings in constructing examination timetables," European Journal of Operational Research, Elsevier, vol. 232(2), pages 287-297.
    9. G N Beligiannis & C Moschopoulos & S D Likothanassis, 2009. "A genetic algorithm approach to school timetabling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 23-42, January.
    10. Burke, E.K. & Eckersley, A.J. & McCollum, B. & Petrovic, S. & Qu, R., 2010. "Hybrid variable neighbourhood approaches to university exam timetabling," European Journal of Operational Research, Elsevier, vol. 206(1), pages 46-53, October.
    11. Johnes, Jill, 2015. "Operational Research in education," European Journal of Operational Research, Elsevier, vol. 243(3), pages 683-696.
    12. Zhang, Defu & Liu, Yongkai & M'Hallah, Rym & Leung, Stephen C.H., 2010. "A simulated annealing with a new neighborhood structure based algorithm for high school timetabling problems," European Journal of Operational Research, Elsevier, vol. 203(3), pages 550-558, June.
    13. Song, Kwonsik & Kim, Sooyoung & Park, Moonseo & Lee, Hyun-Soo, 2017. "Energy efficiency-based course timetabling for university buildings," Energy, Elsevier, vol. 139(C), pages 394-405.
    14. Syariza Abdul-Rahman & Edmund Burke & Andrzej Bargiela & Barry McCollum & Ender Özcan, 2014. "A constructive approach to examination timetabling based on adaptive decomposition and ordering," Annals of Operations Research, Springer, vol. 218(1), pages 3-21, July.
    15. De Causmaecker, Patrick & Demeester, Peter & Vanden Berghe, Greet, 2009. "A decomposed metaheuristic approach for a real-world university timetabling problem," European Journal of Operational Research, Elsevier, vol. 195(1), pages 307-318, May.
    16. Kahar, M.N.M. & Kendall, G., 2010. "The examination timetabling problem at Universiti Malaysia Pahang: Comparison of a constructive heuristic with an existing software solution," European Journal of Operational Research, Elsevier, vol. 207(2), pages 557-565, December.
    17. Sabar, Nasser R. & Ayob, Masri & Kendall, Graham & Qu, Rong, 2012. "A honey-bee mating optimization algorithm for educational timetabling problems," European Journal of Operational Research, Elsevier, vol. 216(3), pages 533-543.
    18. Yu Lei & Jiao Shi, 2017. "A NNIA Scheme for Timetabling Problems," Journal of Optimization, Hindawi, vol. 2017, pages 1-11, May.
    19. De Boeck, Liesje & Beliën, Jeroen & Creemers, Stefan, 2016. "A column generation approach for solving the examination-timetabling problemAuthor-Name: Woumans, Gert," European Journal of Operational Research, Elsevier, vol. 253(1), pages 178-194.
    20. T. Godwin, 2022. "Obtaining quality business school examination timetable under heterogeneous elective selections through surrogacy," OPSEARCH, Springer;Operational Research Society of India, vol. 59(3), pages 1055-1093, September.

    More about this item

    Keywords

    Timetabling Heuristics;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:197:y:2009:i:2:p:482-491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.