IDEAS home Printed from https://ideas.repec.org/a/kap/jgeosy/v16y2014i3p287-309.html
   My bibliography  Save this article

Corridor location: the multi-gateway shortest path model

Author

Listed:
  • Maria Scaparra
  • Richard Church
  • F. Medrano

Abstract

The problem of corridor location can be found in a number of fields including power transmission, highways, and pipelines. It involves the placement of a corridor or rights-of-way that traverses a landscape starting at an origin and ending at a destination. Since most systems are subject to environmental review, it is important to generate competitive, but different alternatives. This paper addresses the problem of generating efficient, spatially different alternatives to the corridor location problem. We discuss the weaknesses in current models and propose a new approach which is designed to overcome many of these problems. We present an application of this model to a real landscape and compare the results to past work. Overall, the new model called the multi-gateway shortest path problem can generate a wide variety of efficient alignments, which eclipse what could be generated by past work. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Maria Scaparra & Richard Church & F. Medrano, 2014. "Corridor location: the multi-gateway shortest path model," Journal of Geographical Systems, Springer, vol. 16(3), pages 287-309, July.
  • Handle: RePEc:kap:jgeosy:v:16:y:2014:i:3:p:287-309
    DOI: 10.1007/s10109-014-0197-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10109-014-0197-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10109-014-0197-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akgun, Vedat & Erkut, Erhan & Batta, Rajan, 2000. "On finding dissimilar paths," European Journal of Operational Research, Elsevier, vol. 121(2), pages 232-246, March.
    2. E. Downey Brill, Jr., 1979. "The Use of Optimization Models in Public-Sector Planning," Management Science, INFORMS, vol. 25(5), pages 413-422, May.
    3. Erkut, Erhan, 1990. "The discrete p-dispersion problem," European Journal of Operational Research, Elsevier, vol. 46(1), pages 48-60, May.
    4. M F Goodchild, 1977. "An Evaluation of Lattice Solutions to the Problem of Corridor Location," Environment and Planning A, , vol. 9(7), pages 727-738, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Feng & Alan T. Murray, 2018. "Allocation using a heterogeneous space Voronoi diagram," Journal of Geographical Systems, Springer, vol. 20(3), pages 207-226, July.
    2. Richard L Church & Carlos A Baez, 2020. "Generating optimal and near-optimal solutions to facility location problems," Environment and Planning B, , vol. 47(6), pages 1014-1030, July.
    3. Murray, Alan T., 2021. "Contemporary optimization application through geographic information systems," Omega, Elsevier, vol. 99(C).
    4. Pushak, Yasha & Hare, Warren & Lucet, Yves, 2016. "Multiple-path selection for new highway alignments using discrete algorithms," European Journal of Operational Research, Elsevier, vol. 248(2), pages 415-427.
    5. Eric Daniel Fournier, 2016. "MOGADOR revisited: Improving a genetic approach to multi-objective corridor search," Environment and Planning B, , vol. 43(4), pages 663-680, July.
    6. Xin Feng & Shaohua Wang & Alan T Murray & Yuanpei Cao & Song Gao, 2021. "Multi-objective trajectory optimization in planning for sequential activities across space and through time," Environment and Planning B, , vol. 48(4), pages 945-963, May.
    7. C. Jacobs-Crisioni & C. C. Koopmans, 2016. "Transport link scanner: simulating geographic transport network expansion through individual investments," Journal of Geographical Systems, Springer, vol. 18(3), pages 265-301, July.
    8. F Antonio Medrano, 2021. "Effects of raster terrain representation on GIS shortest path analysis," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucio Bianco & Massimiliano Caramia & Stefano Giordani & Veronica Piccialli, 2016. "A Game-Theoretic Approach for Regulating Hazmat Transportation," Transportation Science, INFORMS, vol. 50(2), pages 424-438, May.
    2. Zanakis, Stelios H. & Mandakovic, Tomislav & Gupta, Sushil K. & Sahay, Sundeep & Hong, Sungwan, 1995. "A review of program evaluation and fund allocation methods within the service and government sectors," Socio-Economic Planning Sciences, Elsevier, vol. 29(1), pages 59-79, March.
    3. Oléron-Evans, Thomas P. & Salhab, Melda, 2021. "Optimal land use allocation for the Heathrow opportunity area using multi-objective linear programming," Land Use Policy, Elsevier, vol. 105(C).
    4. Rennen, G., 2008. "Subset Selection from Large Datasets for Kriging Modeling," Discussion Paper 2008-26, Tilburg University, Center for Economic Research.
    5. Preethi Issac & Ann Melissa Campbell, 2017. "Shortest path problem with arc failure scenarios," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(2), pages 139-163, June.
    6. Avella, P. & Benati, S. & Canovas Martinez, L. & Dalby, K. & Di Girolamo, D. & Dimitrijevic, B. & Ghiani, G. & Giannikos, I. & Guttmann, N. & Hultberg, T. H. & Fliege, J. & Marin, A. & Munoz Marquez, , 1998. "Some personal views on the current state and the future of locational analysis," European Journal of Operational Research, Elsevier, vol. 104(2), pages 269-287, January.
    7. W. David Pisinger & Anders Bo Rasmussen & Rune Sandvik, 2007. "Solution of Large Quadratic Knapsack Problems Through Aggressive Reduction," INFORMS Journal on Computing, INFORMS, vol. 19(2), pages 280-290, May.
    8. Mingyu Kim & Rajan Batta & Qing He, 2016. "Optimal routing of infiltration operations," Journal of Transportation Security, Springer, vol. 9(1), pages 87-104, June.
    9. Sandra Zajac, 2018. "On a two-phase solution approach for the bi-objective k-dissimilar vehicle routing problem," Journal of Heuristics, Springer, vol. 24(3), pages 515-550, June.
    10. Makowski, David & Hendrix, Eligius M. T. & van Ittersum, Martin K. & Rossing, Walter A. H., 2001. "Generation and presentation of nearly optimal solutions for mixed-integer linear programming, applied to a case in farming system design," European Journal of Operational Research, Elsevier, vol. 132(2), pages 425-438, July.
    11. Erkut, E. & ReVelle, C. & Ulkusal, Y., 1996. "Integer-friendly formulations for the r-separation problem," European Journal of Operational Research, Elsevier, vol. 92(2), pages 342-351, July.
    12. Jayashankar M. Swaminathan, 2003. "Decision Support for Allocating Scarce Drugs," Interfaces, INFORMS, vol. 33(2), pages 1-11, April.
    13. Nicolas Dupin & Frank Nielsen & El-Ghazali Talbi, 2021. "Unified Polynomial Dynamic Programming Algorithms for P-Center Variants in a 2D Pareto Front," Mathematics, MDPI, vol. 9(4), pages 1-30, February.
    14. Wang, Yang & Wu, Qinghua & Glover, Fred, 2017. "Effective metaheuristic algorithms for the minimum differential dispersion problem," European Journal of Operational Research, Elsevier, vol. 258(3), pages 829-843.
    15. Michael Kuby & Seow Lim, 2007. "Location of Alternative-Fuel Stations Using the Flow-Refueling Location Model and Dispersion of Candidate Sites on Arcs," Networks and Spatial Economics, Springer, vol. 7(2), pages 129-152, June.
    16. Castillo, Ignacio & Kampas, Frank J. & Pintér, János D., 2008. "Solving circle packing problems by global optimization: Numerical results and industrial applications," European Journal of Operational Research, Elsevier, vol. 191(3), pages 786-802, December.
    17. Martí, Rafael & Martínez-Gavara, Anna & Pérez-Peló, Sergio & Sánchez-Oro, Jesús, 2022. "A review on discrete diversity and dispersion maximization from an OR perspective," European Journal of Operational Research, Elsevier, vol. 299(3), pages 795-813.
    18. Alain Billionnet & Sourour Elloumi & Amélie Lambert & Angelika Wiegele, 2017. "Using a Conic Bundle Method to Accelerate Both Phases of a Quadratic Convex Reformulation," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 318-331, May.
    19. Lei, Ting L. & Church, Richard L., 2015. "On the unified dispersion problem: Efficient formulations and exact algorithms," European Journal of Operational Research, Elsevier, vol. 241(3), pages 622-630.
    20. Frank J. Kampas & János D. Pintér & Ignacio Castillo, 2023. "Model Development and Solver Demonstrations Using Randomized Test Problems," SN Operations Research Forum, Springer, vol. 4(1), pages 1-15, March.

    More about this item

    Keywords

    Corridor location; Shortest path algorithms; Alternative generation; GIS; Spatial optimization; C44; Q40;
    All these keywords.

    JEL classification:

    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jgeosy:v:16:y:2014:i:3:p:287-309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.