IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v246y2015i1p20-33.html
   My bibliography  Save this article

Solving stochastic resource-constrained project scheduling problems by closed-loop approximate dynamic programming

Author

Listed:
  • Li, Haitao
  • Womer, Norman K.

Abstract

Project scheduling problems with both resource constraints and uncertain task durations have applications in a variety of industries. While the existing research literature has been focusing on finding an a priori open-loop task sequence that minimizes the expected makespan, finding a dynamic and adaptive closed-loop policy has been regarded as being computationally intractable. In this research, we develop effective and efficient approximate dynamic programming (ADP) algorithms based on the rollout policy for this category of stochastic scheduling problems. To enhance performance of the rollout algorithm, we employ constraint programming (CP) to improve the performance of base policy offered by a priority-rule heuristic. We further devise a hybrid ADP framework that integrates both the look-back and look-ahead approximation architectures, to simultaneously achieve both the quality of a rollout (look-ahead) policy to sequentially improve a task sequence, and the efficiency of a lookup table (look-back) approach. Computational results on the benchmark instances show that our hybrid ADP algorithm is able to obtain competitive solutions with the state-of-the-art algorithms in reasonable computational time. It performs particularly well for instances with non-symmetric probability distribution of task durations.

Suggested Citation

  • Li, Haitao & Womer, Norman K., 2015. "Solving stochastic resource-constrained project scheduling problems by closed-loop approximate dynamic programming," European Journal of Operational Research, Elsevier, vol. 246(1), pages 20-33.
  • Handle: RePEc:eee:ejores:v:246:y:2015:i:1:p:20-33
    DOI: 10.1016/j.ejor.2015.04.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722171500288X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.04.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsai, Ying-Wei & D. Gemmill, Douglas, 1998. "Using tabu search to schedule activities of stochastic resource-constrained projects," European Journal of Operational Research, Elsevier, vol. 111(1), pages 129-141, November.
    2. Golenko-Ginzburg, Dimitri & Gonik, Aharon, 1997. "Stochastic network project scheduling with non-consumable limited resources," International Journal of Production Economics, Elsevier, vol. 48(1), pages 29-37, January.
    3. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(5), pages 687-698, October.
    4. Kolisch, Rainer, 1996. "Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation," European Journal of Operational Research, Elsevier, vol. 90(2), pages 320-333, April.
    5. Nicola Secomandi, 2001. "A Rollout Policy for the Vehicle Routing Problem with Stochastic Demands," Operations Research, INFORMS, vol. 49(5), pages 796-802, October.
    6. Hugo P. Simão & Jeff Day & Abraham P. George & Ted Gifford & John Nienow & Warren B. Powell, 2009. "An Approximate Dynamic Programming Algorithm for Large-Scale Fleet Management: A Case Application," Transportation Science, INFORMS, vol. 43(2), pages 178-197, May.
    7. Elmaghraby, S. E. & Ferreira, A. A. & Tavares, L. V., 2000. "Optimal start times under stochastic activity durations," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 153-164, March.
    8. Dimitris Bertsimas & Ioana Popescu, 2003. "Revenue Management in a Dynamic Network Environment," Transportation Science, INFORMS, vol. 37(3), pages 257-277, August.
    9. Deblaere, Filip & Demeulemeester, Erik & Herroelen, Willy, 2011. "Proactive policies for the stochastic resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 214(2), pages 308-316, October.
    10. Rolf H. Möhring & Frederik Stork, 2000. "Linear preselective policies for stochastic project scheduling," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 52(3), pages 501-515, December.
    11. Brian Keller & GÜzİn Bayraksan, 2010. "Scheduling jobs sharing multiple resources under uncertainty: A stochastic programming approach," IISE Transactions, Taylor & Francis Journals, vol. 42(1), pages 16-30.
    12. Bajis Dodin, 1984. "Determining the K Most Critical Paths in PERT Networks," Operations Research, INFORMS, vol. 32(4), pages 859-877, August.
    13. Bajis Dodin, 2006. "A Practical and Accurate Alternative to PERT," International Series in Operations Research & Management Science, in: Joanna Józefowska & Jan Weglarz (ed.), Perspectives in Modern Project Scheduling, chapter 0, pages 3-23, Springer.
    14. Ulrich Dorndorf & Erwin Pesch & Toàn Phan-Huy, 2000. "A Time-Oriented Branch-and-Bound Algorithm for Resource-Constrained Project Scheduling with Generalised Precedence Constraints," Management Science, INFORMS, vol. 46(10), pages 1365-1384, October.
    15. Siqian Shen & J. Cole Smith & Shabbir Ahmed, 2010. "Expectation and Chance-Constrained Models and Algorithms for Insuring Critical Paths," Management Science, INFORMS, vol. 56(10), pages 1794-1814, October.
    16. W. J. Gutjahr & C. Strauss & E. Wagner, 2000. "A Stochastic Branch-and-Bound Approach to Activity Crashing in Project Management," INFORMS Journal on Computing, INFORMS, vol. 12(2), pages 125-135, May.
    17. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(3), pages 381-386, June.
    18. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(4), pages 525-537, August.
    19. Huseyin Topaloglu & Warren B. Powell, 2006. "Dynamic-Programming Approximations for Stochastic Time-Staged Integer Multicommodity-Flow Problems," INFORMS Journal on Computing, INFORMS, vol. 18(1), pages 31-42, February.
    20. Richard Bellman, 1957. "On a Dynamic Programming Approach to the Caterer Problem--I," Management Science, INFORMS, vol. 3(3), pages 270-278, April.
    21. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(2), pages 285-292, April.
    22. Dieter Debels & Mario Vanhoucke, 2007. "A Decomposition-Based Genetic Algorithm for the Resource-Constrained Project-Scheduling Problem," Operations Research, INFORMS, vol. 55(3), pages 457-469, June.
    23. Kolisch, Rainer & Hartmann, Sonke, 2006. "Experimental investigation of heuristics for resource-constrained project scheduling: An update," European Journal of Operational Research, Elsevier, vol. 174(1), pages 23-37, October.
    24. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(1), pages 151-159, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sha, Yue & Zhang, Junlong & Cao, Hui, 2021. "Multistage stochastic programming approach for joint optimization of job scheduling and material ordering under endogenous uncertainties," European Journal of Operational Research, Elsevier, vol. 290(3), pages 886-900.
    2. Zhu, Xia & Ruiz, Rubén & Li, Shiyu & Li, Xiaoping, 2017. "An effective heuristic for project scheduling with resource availability cost," European Journal of Operational Research, Elsevier, vol. 257(3), pages 746-762.
    3. Morteza Davari & Erik Demeulemeester, 2019. "Important classes of reactions for the proactive and reactive resource-constrained project scheduling problem," Annals of Operations Research, Springer, vol. 274(1), pages 187-210, March.
    4. Silva, Thiago A.O. & de Souza, Mauricio C., 2020. "Surgical scheduling under uncertainty by approximate dynamic programming," Omega, Elsevier, vol. 95(C).
    5. Thul, Lawrence & Powell, Warren, 2023. "Stochastic optimization for vaccine and testing kit allocation for the COVID-19 pandemic," European Journal of Operational Research, Elsevier, vol. 304(1), pages 325-338.
    6. Ursavas, Evrim, 2017. "A benders decomposition approach for solving the offshore wind farm installation planning at the North Sea," European Journal of Operational Research, Elsevier, vol. 258(2), pages 703-714.
    7. Deng, Qichen & Santos, Bruno F., 2022. "Lookahead approximate dynamic programming for stochastic aircraft maintenance check scheduling optimization," European Journal of Operational Research, Elsevier, vol. 299(3), pages 814-833.
    8. Brčić, Mario & Katić, Marija & Hlupić, Nikica, 2019. "Planning horizons based proactive rescheduling for stochastic resource-constrained project scheduling problems," European Journal of Operational Research, Elsevier, vol. 273(1), pages 58-66.
    9. Salim Rostami & Stefan Creemers & Roel Leus, 2018. "New strategies for stochastic resource-constrained project scheduling," Journal of Scheduling, Springer, vol. 21(3), pages 349-365, June.
    10. Xichao Su & Wei Han & Yu Wu & Yong Zhang & Jie Liu, 2018. "A Proactive Robust Scheduling Method for Aircraft Carrier Flight Deck Operations with Stochastic Durations," Complexity, Hindawi, vol. 2018, pages 1-38, November.
    11. Zhalechian, M. & Tavakkoli-Moghaddam, R. & Zahiri, B. & Mohammadi, M., 2016. "Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 182-214.
    12. Balouka, Noemie & Cohen, Izack, 2021. "A robust optimization approach for the multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 291(2), pages 457-470.
    13. Satic, U. & Jacko, P. & Kirkbride, C., 2024. "A simulation-based approximate dynamic programming approach to dynamic and stochastic resource-constrained multi-project scheduling problem," European Journal of Operational Research, Elsevier, vol. 315(2), pages 454-469.
    14. Seddik, Yasmina & Hanzálek, Zdenek, 2017. "Match-up scheduling of mixed-criticality jobs: Maximizing the probability of jobs execution," European Journal of Operational Research, Elsevier, vol. 262(1), pages 46-59.
    15. Marlin W. Ulmer, 2020. "Horizontal combinations of online and offline approximate dynamic programming for stochastic dynamic vehicle routing," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 279-308, March.
    16. Hongli Yu & Yuelin Gao & Le Wang & Jiangtao Meng, 2020. "A Hybrid Particle Swarm Optimization Algorithm Enhanced with Nonlinear Inertial Weight and Gaussian Mutation for Job Shop Scheduling Problems," Mathematics, MDPI, vol. 8(8), pages 1-17, August.
    17. Ripon K. Chakrabortty & Ruhul A. Sarker & Daryl L. Essam, 2020. "Single mode resource constrained project scheduling with unreliable resources," Operational Research, Springer, vol. 20(3), pages 1369-1403, September.
    18. Ulmer, Marlin W. & Thomas, Barrett W., 2020. "Meso-parametric value function approximation for dynamic customer acceptances in delivery routing," European Journal of Operational Research, Elsevier, vol. 285(1), pages 183-195.
    19. Marlin W. Ulmer & Justin C. Goodson & Dirk C. Mattfeld & Marco Hennig, 2019. "Offline–Online Approximate Dynamic Programming for Dynamic Vehicle Routing with Stochastic Requests," Service Science, INFORMS, vol. 53(1), pages 185-202, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Herroelen, Willy & Leus, Roel, 2005. "Project scheduling under uncertainty: Survey and research potentials," European Journal of Operational Research, Elsevier, vol. 165(2), pages 289-306, September.
    2. Salim Rostami & Stefan Creemers & Roel Leus, 2018. "New strategies for stochastic resource-constrained project scheduling," Journal of Scheduling, Springer, vol. 21(3), pages 349-365, June.
    3. Allen C. Goodman & Miron Stano, 2000. "Hmos and Health Externalities: A Local Public Good Perspective," Public Finance Review, , vol. 28(3), pages 247-269, May.
    4. Bettina Campedelli & Andrea Guerrina & Giulia Romano & Chiara Leardini, 2014. "La performance della rete ospedaliera pubblica della regione Veneto. L?impatto delle variabili ambientali e operative sull?efficienza," MECOSAN, FrancoAngeli Editore, vol. 2014(92), pages 119-142.
    5. Penn Loh & Zoë Ackerman & Joceline Fidalgo & Rebecca Tumposky, 2022. "Co-Education/Co-Research Partnership: A Critical Approach to Co-Learning between Dudley Street Neighborhood Initiative and Tufts University," Social Sciences, MDPI, vol. 11(2), pages 1-17, February.
    6. O'Brien, Raymond & Patacchini, Eleonora, 2003. "Testing the exogeneity assumption in panel data models with "non classical" disturbances," Discussion Paper Series In Economics And Econometrics 0302, Economics Division, School of Social Sciences, University of Southampton.
    7. YongSeog Kim & W. Nick Street & Gary J. Russell & Filippo Menczer, 2005. "Customer Targeting: A Neural Network Approach Guided by Genetic Algorithms," Management Science, INFORMS, vol. 51(2), pages 264-276, February.
    8. Yanling Li & Zita Oravecz & Shuai Zhou & Yosef Bodovski & Ian J. Barnett & Guangqing Chi & Yuan Zhou & Naomi P. Friedman & Scott I. Vrieze & Sy-Miin Chow, 2022. "Bayesian Forecasting with a Regime-Switching Zero-Inflated Multilevel Poisson Regression Model: An Application to Adolescent Alcohol Use with Spatial Covariates," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 376-402, June.
    9. Oscar J. Cacho & Robyn L. Hean & Russell M. Wise, 2003. "Carbon‐accounting methods and reforestation incentives," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 47(2), pages 153-179, June.
    10. Walter M. Cadette, 1999. "Financing Long-Term Care: Options for Policy," Economics Working Paper Archive wp_283, Levy Economics Institute.
    11. Eggli, Yves & Halfon, Patricia & Chikhi, Mehdi & Bandi, Till, 2006. "Ambulatory healthcare information system: A conceptual framework," Health Policy, Elsevier, vol. 78(1), pages 26-38, August.
    12. M. A. Noor & E.A. Al-Said, 2002. "Finite-Difference Method for a System of Third-Order Boundary-Value Problems," Journal of Optimization Theory and Applications, Springer, vol. 112(3), pages 627-637, March.
    13. Yong He & Zhiyi Tan, 2002. "Ordinal On-Line Scheduling for Maximizing the Minimum Machine Completion Time," Journal of Combinatorial Optimization, Springer, vol. 6(2), pages 199-206, June.
    14. Henderson, James E. & Dunn, Michael A., 2007. "Investigating the Potential of Fee-Based Recreation on Private Lands in the Lower Mississippi River Delta," 2007 Annual Meeting, February 4-7, 2007, Mobile, Alabama 34822, Southern Agricultural Economics Association.
    15. Eike Quilling & Birgit Babitsch & Kevin Dadaczynski & Stefanie Kruse & Maja Kuchler & Heike Köckler & Janna Leimann & Ulla Walter & Christina Plantz, 2020. "Municipal Health Promotion as Part of Urban Health: A Policy Framework for Action," Sustainability, MDPI, vol. 12(16), pages 1-10, August.
    16. Haeringer, Guillaume & Klijn, Flip, 2009. "Constrained school choice," Journal of Economic Theory, Elsevier, vol. 144(5), pages 1921-1947, September.
    17. Alireza Nili & Mary Tate & David Johnstone, 2019. "The process of solving problems with self-service technologies: a study from the user’s perspective," Electronic Commerce Research, Springer, vol. 19(2), pages 373-407, June.
    18. Chein-Shan Liu & Zhuojia Fu & Chung-Lun Kuo, 2017. "Directional Method of Fundamental Solutions for Three-dimensional Laplace Equation," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 9(6), pages 112-123, December.
    19. Ali Akgül & Esra Karatas Akgül & Dumitru Baleanu & Mustafa Inc, 2018. "New Numerical Method for Solving Tenth Order Boundary Value Problems," Mathematics, MDPI, vol. 6(11), pages 1-9, November.
    20. José Sánchez Maldonado & Salvador Gómez Sala, 2006. "The Reform of Indirect Taxation in Spain: VAT and Excise," International Center for Public Policy Working Paper Series, at AYSPS, GSU paper0607, International Center for Public Policy, Andrew Young School of Policy Studies, Georgia State University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:246:y:2015:i:1:p:20-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.