IDEAS home Printed from https://ideas.repec.org/a/spr/grdene/v24y2015i1d10.1007_s10726-014-9383-9.html
   My bibliography  Save this article

Studies on Interval Multiplicative Preference Relations and Their Application to Group Decision Making

Author

Listed:
  • Meimei Xia

    (Tsinghua University)

  • Jian Chen

    (Tsinghua University)

Abstract

The consistency of interval multiplicative preference relations is studied and applied to group decision making. Weak transitivity for interval multiplicative preference relation is defined by comparing two interval multiplicative preferemnce values using a possibility degree formula. The consistent interval multiplicative preference relation is defined based on interval operations, which provides a convenient means to check whether an interval multiplicative preference relation is consistent. A goal-programming model is established to derive the interval priority weight vector from an interval multiplicative preference relation, which must solve only one model. An algorithm is developed through interaction with decision makers to ensure the transitivity of an interval multiplicative preference relation. The proposed methods are then extended to deal with incomplete interval multiplicative preference relations, which can determine the priority weight vector without estimating missing values. An algorithm is also developed to derive the priority vector from group multiplicative preference relations. This algorithm can help decision makers ensure the weak transitivity of their provided multiplicative preference relations.

Suggested Citation

  • Meimei Xia & Jian Chen, 2015. "Studies on Interval Multiplicative Preference Relations and Their Application to Group Decision Making," Group Decision and Negotiation, Springer, vol. 24(1), pages 115-144, January.
  • Handle: RePEc:spr:grdene:v:24:y:2015:i:1:d:10.1007_s10726-014-9383-9
    DOI: 10.1007/s10726-014-9383-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10726-014-9383-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10726-014-9383-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Herrera, F. & Martinez, L. & Sanchez, P. J., 2005. "Managing non-homogeneous information in group decision making," European Journal of Operational Research, Elsevier, vol. 166(1), pages 115-132, October.
    2. B. Baets & H. Meyer & B. Schuymer, 2006. "Cyclic Evaluation of Transitivity of Reciprocal Relations," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 26(2), pages 217-238, April.
    3. Sugihara, Kazutomi & Ishii, Hiroaki & Tanaka, Hideo, 2004. "Interval priorities in AHP by interval regression analysis," European Journal of Operational Research, Elsevier, vol. 158(3), pages 745-754, November.
    4. Conde, Eduardo & de la Paz Rivera Pérez, María, 2010. "A linear optimization problem to derive relative weights using an interval judgement matrix," European Journal of Operational Research, Elsevier, vol. 201(2), pages 537-544, March.
    5. Karapetrovic, Stanislav & Rosenbloom, E. S., 1999. "A quality control approach to consistency paradoxes in AHP," European Journal of Operational Research, Elsevier, vol. 119(3), pages 704-718, December.
    6. Herrera-Viedma, E. & Herrera, F. & Chiclana, F. & Luque, M., 2004. "Some issues on consistency of fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 154(1), pages 98-109, April.
    7. Xu, Zeshui & Chen, Jian, 2008. "Some models for deriving the priority weights from interval fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 184(1), pages 266-280, January.
    8. Saaty, Thomas L. & Vargas, Luis G., 1987. "Uncertainty and rank order in the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 32(1), pages 107-117, October.
    9. Wang, Ying-Ming & Elhag, Taha M.S., 2007. "A goal programming method for obtaining interval weights from an interval comparison matrix," European Journal of Operational Research, Elsevier, vol. 177(1), pages 458-471, February.
    10. Mustajoki, Jyri & Hamalainen, Raimo P. & Lindstedt, Mats R.K., 2006. "Using intervals for global sensitivity and worst-case analyses in multiattribute value trees," European Journal of Operational Research, Elsevier, vol. 174(1), pages 278-292, October.
    11. Salo, Ahti A. & Hamalainen, Raimo P., 1995. "Preference programming through approximate ratio comparisons," European Journal of Operational Research, Elsevier, vol. 82(3), pages 458-475, May.
    12. Liu, Fang & Zhang, Wei-Guo & Wang, Zhong-Xing, 2012. "A goal programming model for incomplete interval multiplicative preference relations and its application in group decision-making," European Journal of Operational Research, Elsevier, vol. 218(3), pages 747-754.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chin-Yi Chen & Jih-Jeng Huang, 2022. "Deriving Fuzzy Weights from the Consistent Fuzzy Analytic Hierarchy Process," Mathematics, MDPI, vol. 10(19), pages 1-12, September.
    2. Meng, Fanyong & Tan, Chunqiao & Chen, Xiaohong, 2017. "Multiplicative consistency analysis for interval fuzzy preference relations: A comparative study," Omega, Elsevier, vol. 68(C), pages 17-38.
    3. Huimin Zhang & Meng Li & Wen Chen, 2023. "Assessing Competitiveness in New Energy Vehicle Enterprises: A Group Decision Model with Interval Multiplicative Preference Relations," Mathematics, MDPI, vol. 12(1), pages 1-21, December.
    4. Meng, Fanyong & Xiong, Beibei, 2021. "Logical efficiency decomposition for general two-stage systems in view of cross efficiency," European Journal of Operational Research, Elsevier, vol. 294(2), pages 622-632.
    5. Pedro Huidobro & Pedro Alonso & Vladimír Janiš & Susana Montes, 2022. "Convexity and level sets for interval-valued fuzzy sets," Fuzzy Optimization and Decision Making, Springer, vol. 21(4), pages 553-580, December.
    6. Jian Li & Jian-qiang Wang & Jun-hua Hu, 2019. "Interval-valued n-person cooperative games with satisfactory degree constraints," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(4), pages 1177-1194, December.
    7. Ting Kuo & Ming-Hui Chen, 2022. "On Indeterminacy of Interval Multiplicative Pairwise Comparison Matrix," Mathematics, MDPI, vol. 10(4), pages 1-18, February.
    8. Liu Fang & Peng Yanan & Zhang Weiguo & Pedrycz Witold, 2017. "On Consistency in AHP and Fuzzy AHP," Journal of Systems Science and Information, De Gruyter, vol. 5(2), pages 128-147, April.
    9. Gong, Zaiwu & Guo, Weiwei & Herrera-Viedma, Enrique & Gong, Zejun & Wei, Guo, 2020. "Consistency and consensus modeling of linear uncertain preference relations," European Journal of Operational Research, Elsevier, vol. 283(1), pages 290-307.
    10. Jinpei Liu & Jingmiao Song & Qin Xu & Zhifu Tao & Huayou Chen, 2019. "Group decision making based on DEA cross-efficiency with intuitionistic fuzzy preference relations," Fuzzy Optimization and Decision Making, Springer, vol. 18(3), pages 345-370, September.
    11. Fu, Chao & Chang, Wenjun & Xue, Min & Yang, Shanlin, 2019. "Multiple criteria group decision making with belief distributions and distributed preference relations," European Journal of Operational Research, Elsevier, vol. 273(2), pages 623-633.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhen Zhang & Chonghui Guo, 2017. "Deriving priority weights from intuitionistic multiplicative preference relations under group decision-making settings," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(12), pages 1582-1599, December.
    2. Wang, Zhou-Jing & Li, Kevin W., 2015. "A multi-step goal programming approach for group decision making with incomplete interval additive reciprocal comparison matrices," European Journal of Operational Research, Elsevier, vol. 242(3), pages 890-900.
    3. Xu, Zeshui & Chen, Jian, 2008. "Some models for deriving the priority weights from interval fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 184(1), pages 266-280, January.
    4. Liu Fang & Peng Yanan & Zhang Weiguo & Pedrycz Witold, 2017. "On Consistency in AHP and Fuzzy AHP," Journal of Systems Science and Information, De Gruyter, vol. 5(2), pages 128-147, April.
    5. Liu, Fang & Zhang, Wei-Guo & Zhang, Li-Hua, 2014. "Consistency analysis of triangular fuzzy reciprocal preference relations," European Journal of Operational Research, Elsevier, vol. 235(3), pages 718-726.
    6. Li, Kevin W. & Wang, Zhou-Jing & Tong, Xiayu, 2016. "Acceptability analysis and priority weight elicitation for interval multiplicative comparison matrices," European Journal of Operational Research, Elsevier, vol. 250(2), pages 628-638.
    7. Wang, Ying-Ming & Elhag, Taha M.S., 2007. "A goal programming method for obtaining interval weights from an interval comparison matrix," European Journal of Operational Research, Elsevier, vol. 177(1), pages 458-471, February.
    8. Zhu, Bin & Xu, Zeshui & Zhang, Ren & Hong, Mei, 2015. "Generalized analytic network process," European Journal of Operational Research, Elsevier, vol. 244(1), pages 277-288.
    9. Yibin Zhang & Kevin W. Li & Zhou-Jing Wang, 2017. "Prioritization and Aggregation of Intuitionistic Preference Relations: A Multiplicative-Transitivity-Based Transformation from Intuitionistic Judgment Data to Priority Weights," Group Decision and Negotiation, Springer, vol. 26(2), pages 409-436, March.
    10. Conde, Eduardo & de la Paz Rivera Pérez, María, 2010. "A linear optimization problem to derive relative weights using an interval judgement matrix," European Journal of Operational Research, Elsevier, vol. 201(2), pages 537-544, March.
    11. Fang Liu & Mao-Jie Huang & Cai-Xia Huang & Witold Pedrycz, 2022. "Measuring consistency of interval-valued preference relations: comments and comparison," Operational Research, Springer, vol. 22(1), pages 371-399, March.
    12. Ahn, Byeong Seok, 2017. "The analytic hierarchy process with interval preference statements," Omega, Elsevier, vol. 67(C), pages 177-185.
    13. Liu, Fang & Zhang, Wei-Guo & Wang, Zhong-Xing, 2012. "A goal programming model for incomplete interval multiplicative preference relations and its application in group decision-making," European Journal of Operational Research, Elsevier, vol. 218(3), pages 747-754.
    14. Mikhailov, L., 2004. "A fuzzy approach to deriving priorities from interval pairwise comparison judgements," European Journal of Operational Research, Elsevier, vol. 159(3), pages 687-704, December.
    15. Karasakal, Esra & Aker, Pınar, 2017. "A multicriteria sorting approach based on data envelopment analysis for R&D project selection problem," Omega, Elsevier, vol. 73(C), pages 79-92.
    16. Zhu, Bin & Xu, Zeshui, 2014. "Stochastic preference analysis in numerical preference relations," European Journal of Operational Research, Elsevier, vol. 237(2), pages 628-633.
    17. Llamazares, Bonifacio & Pérez-Asurmendi, Patrizia, 2013. "Triple-acyclicity in majorities based on difference in support," MPRA Paper 52218, University Library of Munich, Germany.
    18. Yulan Wang & Huayou Chen & Ligang Zhou, 2013. "Logarithm Compatibility of Interval Multiplicative Preference Relations with an Application to Determining the Optimal Weights of Experts in the Group Decision Making," Group Decision and Negotiation, Springer, vol. 22(4), pages 759-772, July.
    19. Hahn, Eugene D., 2006. "Link function selection in stochastic multicriteria decision making models," European Journal of Operational Research, Elsevier, vol. 172(1), pages 86-100, July.
    20. Kim, Soung Hie & Han, Chang Hee, 2000. "Establishing dominance between alternatives with incomplete information in a hierarchically structured attribute tree," European Journal of Operational Research, Elsevier, vol. 122(1), pages 79-90, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:grdene:v:24:y:2015:i:1:d:10.1007_s10726-014-9383-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.