IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i2p185-d206430.html
   My bibliography  Save this article

Consensus-Based Multi-Person Decision Making with Incomplete Fuzzy Preference Relations Using Product Transitivity

Author

Listed:
  • Atiq-ur Rehman

    (Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Punjab 54000, Pakistan)

  • Mustanser Hussain

    (Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Punjab 54000, Pakistan)

  • Adeel Farooq

    (Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Punjab 54000, Pakistan)

  • Muhammad Akram

    (Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan)

Abstract

In this paper, a consensus-based method for multi-person decision making (MPDM) using product transitivity with incomplete fuzzy preference relations (IFPRs) is proposed. Additionally, an average aggregation operator has been used at the first level to estimate the missing preference values and construct the complete fuzzy preference relation (FPR). Then it is confirmed to be product consistent by using the transitive closure formula. Following this, weights of decision makers (DMs) are evaluated by merging consistency weights and predefined priority weights (if any). The consistency weights for the DMs are estimated through product consistency investigation of the information provided by each DM. The consensus process determines whether the selection procedure should be initiated or not. The hybrid comprises of a quitting process and feedback mechanism, and is used to enhance the consensus level amongst DMs in case of an inadequate state. The quitting process arises when some DMs decided to leave the course, and is common in MPDM while dealing with a large number of alternatives. The feedback mechanism is the main novelty of the proposed technique which helps the DMs to improve their given preferences based on this consistency. At the end, a numerical example is deliberated to measure the efficiency and applicability of the proposed method after the comparison with some existing models under the same assumptions. The results show that proposed method can offer useful comprehension into the MPDM process.

Suggested Citation

  • Atiq-ur Rehman & Mustanser Hussain & Adeel Farooq & Muhammad Akram, 2019. "Consensus-Based Multi-Person Decision Making with Incomplete Fuzzy Preference Relations Using Product Transitivity," Mathematics, MDPI, vol. 7(2), pages 1-13, February.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:2:p:185-:d:206430
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/2/185/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/2/185/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dong, Yucheng & Xu, Yinfeng & Li, Hongyi, 2008. "On consistency measures of linguistic preference relations," European Journal of Operational Research, Elsevier, vol. 189(2), pages 430-444, September.
    2. Ergu, Daji & Kou, Gang & Peng, Yi & Shi, Yong, 2011. "A simple method to improve the consistency ratio of the pair-wise comparison matrix in ANP," European Journal of Operational Research, Elsevier, vol. 213(1), pages 246-259, August.
    3. Liu, Fang & Zhang, Wei-Guo & Zhang, Li-Hua, 2014. "Consistency analysis of triangular fuzzy reciprocal preference relations," European Journal of Operational Research, Elsevier, vol. 235(3), pages 718-726.
    4. Donata Marasini & Piero Quatto & Enrico Ripamonti, 2016. "Intuitionistic fuzzy sets in questionnaire analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 50(2), pages 767-790, March.
    5. Siraj, Sajid & Mikhailov, Ludmil & Keane, John, 2012. "A heuristic method to rectify intransitive judgments in pairwise comparison matrices," European Journal of Operational Research, Elsevier, vol. 216(2), pages 420-428.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Yucheng & Hong, Wei-Chiang & Xu, Yinfeng & Yu, Shui, 2013. "Numerical scales generated individually for analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 229(3), pages 654-662.
    2. Kou, Gang & Ergu, Daji & Shang, Jennifer, 2014. "Enhancing data consistency in decision matrix: Adapting Hadamard model to mitigate judgment contradiction," European Journal of Operational Research, Elsevier, vol. 236(1), pages 261-271.
    3. Liang, Fuqi & Brunelli, Matteo & Rezaei, Jafar, 2020. "Consistency issues in the best worst method: Measurements and thresholds," Omega, Elsevier, vol. 96(C).
    4. Meimei Xia & Jian Chen & Juliang Zhang, 2015. "Multi-criteria decision making based on relative measures," Annals of Operations Research, Springer, vol. 229(1), pages 791-811, June.
    5. József Temesi, 2019. "An interactive approach to determine the elements of a pairwise comparison matrix," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(2), pages 533-549, June.
    6. Siraj, Sajid & Mikhailov, Ludmil & Keane, John A., 2015. "Contribution of individual judgments toward inconsistency in pairwise comparisons," European Journal of Operational Research, Elsevier, vol. 242(2), pages 557-567.
    7. Valdecy Pereira & Helder Costa, 2015. "Nonlinear programming applied to the reduction of inconsistency in the AHP method," Annals of Operations Research, Springer, vol. 229(1), pages 635-655, June.
    8. Cooper, Orrin & Yavuz, Idil, 2016. "Linking validation: A search for coherency within the Supermatrix," European Journal of Operational Research, Elsevier, vol. 252(1), pages 232-245.
    9. Siraj, S. & Mikhailov, L. & Keane, J.A., 2012. "Preference elicitation from inconsistent judgments using multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 220(2), pages 461-471.
    10. Alessio Ishizaka & Sajid Siraj, 2020. "Interactive consistency correction in the analytic hierarchy process to preserve ranks," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 443-464, December.
    11. Kou, Gang & Lin, Changsheng, 2014. "A cosine maximization method for the priority vector derivation in AHP," European Journal of Operational Research, Elsevier, vol. 235(1), pages 225-232.
    12. Fanyong Meng & Qingxian An & Xiaohong Chen, 2016. "A consistency and consensus-based method to group decision making with interval linguistic preference relations," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(11), pages 1419-1437, November.
    13. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    14. Feifei Jin & Chang Li & Jinpei Liu & Ligang Zhou, 2021. "Distribution Linguistic Fuzzy Group Decision Making Based on Consistency and Consensus Analysis," Mathematics, MDPI, vol. 9(19), pages 1-19, October.
    15. Ishizaka, Alessio & Siraj, Sajid & Nemery, Philippe, 2016. "Which energy mix for the UK (United Kingdom)? An evolutive descriptive mapping with the integrated GAIA (graphical analysis for interactive aid)–AHP (analytic hierarchy process) visualization tool," Energy, Elsevier, vol. 95(C), pages 602-611.
    16. Kun Chen & Gang Kou & J. Michael Tarn & Yan Song, 2015. "Bridging the gap between missing and inconsistent values in eliciting preference from pairwise comparison matrices," Annals of Operations Research, Springer, vol. 235(1), pages 155-175, December.
    17. Yan, Hong-Bin & Ma, Tieju & Huynh, Van-Nam, 2017. "On qualitative multi-attribute group decision making and its consensus measure: A probability based perspective," Omega, Elsevier, vol. 70(C), pages 94-117.
    18. González-Arteaga, T. & Alcantud, J.C.R. & de Andrés Calle, R., 2016. "A cardinal dissensus measure based on the Mahalanobis distance," European Journal of Operational Research, Elsevier, vol. 251(2), pages 575-585.
    19. Fu, Chao & Yang, Shanlin, 2011. "An attribute weight based feedback model for multiple attributive group decision analysis problems with group consensus requirements in evidential reasoning context," European Journal of Operational Research, Elsevier, vol. 212(1), pages 179-189, July.
    20. Zhu, Bin & Xu, Zeshui, 2014. "Stochastic preference analysis in numerical preference relations," European Journal of Operational Research, Elsevier, vol. 237(2), pages 628-633.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:2:p:185-:d:206430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.