IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v232y2014i3p442-453.html
   My bibliography  Save this article

Relations, models and a memetic approach for three degree-dependent spanning tree problems

Author

Listed:
  • Cerrone, C.
  • Cerulli, R.
  • Raiconi, A.

Abstract

In this paper we take into account three different spanning tree problems with degree-dependent objective functions. The main application of these problems is in the field of optical network design. In particular, we propose the classical Minimum Leaves Spanning Tree problem as a relevant problem in this field and show its relations with the Minimum Branch Vertices and the Minimum Degree Sum Problems. We present a unified memetic algorithm for the three problems and show its effectiveness on a wide range of test instances.

Suggested Citation

  • Cerrone, C. & Cerulli, R. & Raiconi, A., 2014. "Relations, models and a memetic approach for three degree-dependent spanning tree problems," European Journal of Operational Research, Elsevier, vol. 232(3), pages 442-453.
  • Handle: RePEc:eee:ejores:v:232:y:2014:i:3:p:442-453
    DOI: 10.1016/j.ejor.2013.07.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713006103
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.07.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Souza, Mauricio C. & Martins, Pedro, 2008. "Skewed VNS enclosing second order algorithm for the degree constrained minimum spanning tree problem," European Journal of Operational Research, Elsevier, vol. 191(3), pages 677-690, December.
    2. R. Cerulli & M. Gentili & A. Iossa, 2009. "Bounded-degree spanning tree problems: models and new algorithms," Computational Optimization and Applications, Springer, vol. 42(3), pages 353-370, April.
    3. Francesco Carrabs & Raffaele Cerulli & Manlio Gaudioso & Monica Gentili, 2013. "Lower and upper bounds for the spanning tree with minimum branch vertices," Computational Optimization and Applications, Springer, vol. 56(2), pages 405-438, October.
    4. Neumann, Frank, 2007. "Expected runtimes of a simple evolutionary algorithm for the multi-objective minimum spanning tree problem," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1620-1629, September.
    5. Fernandes, Lucinda Matos & Gouveia, Luis, 1998. "Minimal spanning trees with a constraint on the number of leaves," European Journal of Operational Research, Elsevier, vol. 104(1), pages 250-261, January.
    6. Zhou, Gengui & Gen, Mitsuo, 1999. "Genetic algorithm approach on multi-criteria minimum spanning tree problem," European Journal of Operational Research, Elsevier, vol. 114(1), pages 141-152, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mercedes Landete & Alfredo Marín & José Luis Sainz-Pardo, 2017. "Decomposition methods based on articulation vertices for degree-dependent spanning tree problems," Computational Optimization and Applications, Springer, vol. 68(3), pages 749-773, December.
    2. Weinand, Jann Michael & Kleinebrahm, Max & McKenna, Russell & Mainzer, Kai & Fichtner, Wolf, 2019. "Developing a combinatorial optimisation approach to design district heating networks based on deep geothermal energy," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Marín, Alfredo, 2015. "Exact and heuristic solutions for the Minimum Number of Branch Vertices Spanning Tree Problem," European Journal of Operational Research, Elsevier, vol. 245(3), pages 680-689.
    4. Singh, Kavita & Sundar, Shyam, 2019. "A hybrid steady-state genetic algorithm for the min-degree constrained minimum spanning tree problem," European Journal of Operational Research, Elsevier, vol. 276(1), pages 88-105.
    5. Rafael A. Melo & Phillippe Samer & Sebastián Urrutia, 2016. "An effective decomposition approach and heuristics to generate spanning trees with a small number of branch vertices," Computational Optimization and Applications, Springer, vol. 65(3), pages 821-844, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mercedes Landete & Alfredo Marín & José Luis Sainz-Pardo, 2017. "Decomposition methods based on articulation vertices for degree-dependent spanning tree problems," Computational Optimization and Applications, Springer, vol. 68(3), pages 749-773, December.
    2. Francis Sourd & Olivier Spanjaard, 2008. "A Multiobjective Branch-and-Bound Framework: Application to the Biobjective Spanning Tree Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 472-484, August.
    3. Rafael A. Melo & Phillippe Samer & Sebastián Urrutia, 2016. "An effective decomposition approach and heuristics to generate spanning trees with a small number of branch vertices," Computational Optimization and Applications, Springer, vol. 65(3), pages 821-844, December.
    4. Jorge Moreno & Yuri Frota & Simone Martins, 2018. "An exact and heuristic approach for the d-minimum branch vertices problem," Computational Optimization and Applications, Springer, vol. 71(3), pages 829-855, December.
    5. Marín, Alfredo, 2015. "Exact and heuristic solutions for the Minimum Number of Branch Vertices Spanning Tree Problem," European Journal of Operational Research, Elsevier, vol. 245(3), pages 680-689.
    6. G Zhou & M Gen, 2003. "A genetic algorithm approach on tree-like telecommunication network design problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(3), pages 248-254, March.
    7. Lacour, Renaud, 2014. "Approches de résolution exacte et approchée en optimisation combinatoire multi-objectif, application au problème de l'arbre couvrant de poids minimal," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/14806 edited by Vanderpooten, Daniel.
    8. Altannar Chinchuluun & Panos Pardalos, 2007. "A survey of recent developments in multiobjective optimization," Annals of Operations Research, Springer, vol. 154(1), pages 29-50, October.
    9. Delorme, Xavier & Gandibleux, Xavier & Degoutin, Fabien, 2010. "Evolutionary, constructive and hybrid procedures for the bi-objective set packing problem," European Journal of Operational Research, Elsevier, vol. 204(2), pages 206-217, July.
    10. Abraham P. Punnen & Ruonan Zhang, 2011. "Quadratic bottleneck problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(2), pages 153-164, March.
    11. Juan Villegas & Fernando Palacios & Andrés Medaglia, 2006. "Solution methods for the bi-objective (cost-coverage) unconstrained facility location problem with an illustrative example," Annals of Operations Research, Springer, vol. 147(1), pages 109-141, October.
    12. Perny, Patrice & Spanjaard, Olivier, 2005. "A preference-based approach to spanning trees and shortest paths problems***," European Journal of Operational Research, Elsevier, vol. 162(3), pages 584-601, May.
    13. Zhou, Gengui & Min, Hokey & Gen, Mitsuo, 2003. "A genetic algorithm approach to the bi-criteria allocation of customers to warehouses," International Journal of Production Economics, Elsevier, vol. 86(1), pages 35-45, October.
    14. Wen, Hao & Sang, Song & Qiu, Chenhui & Du, Xiangrui & Zhu, Xiao & Shi, Qian, 2019. "A new optimization method of wind turbine airfoil performance based on Bessel equation and GABP artificial neural network," Energy, Elsevier, vol. 187(C).
    15. Si Chen & Ivana Ljubić & S. Raghavan, 2015. "The Generalized Regenerator Location Problem," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 204-220, May.
    16. Neumann, Frank, 2007. "Expected runtimes of a simple evolutionary algorithm for the multi-objective minimum spanning tree problem," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1620-1629, September.
    17. Francesco Carrabs & Raffaele Cerulli & Manlio Gaudioso & Monica Gentili, 2013. "Lower and upper bounds for the spanning tree with minimum branch vertices," Computational Optimization and Applications, Springer, vol. 56(2), pages 405-438, October.
    18. Abilio Lucena & Nelson Maculan & Luidi Simonetti, 2010. "Reformulations and solution algorithms for the maximum leaf spanning tree problem," Computational Management Science, Springer, vol. 7(3), pages 289-311, July.
    19. Min, Hokey & Jeung Ko, Hyun & Seong Ko, Chang, 2006. "A genetic algorithm approach to developing the multi-echelon reverse logistics network for product returns," Omega, Elsevier, vol. 34(1), pages 56-69, January.
    20. Goh, C.K. & Tan, K.C. & Liu, D.S. & Chiam, S.C., 2010. "A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design," European Journal of Operational Research, Elsevier, vol. 202(1), pages 42-54, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:232:y:2014:i:3:p:442-453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.