IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v42y2009i3p353-370.html
   My bibliography  Save this article

Bounded-degree spanning tree problems: models and new algorithms

Author

Listed:
  • R. Cerulli
  • M. Gentili
  • A. Iossa

Abstract

No abstract is available for this item.

Suggested Citation

  • R. Cerulli & M. Gentili & A. Iossa, 2009. "Bounded-degree spanning tree problems: models and new algorithms," Computational Optimization and Applications, Springer, vol. 42(3), pages 353-370, April.
  • Handle: RePEc:spr:coopap:v:42:y:2009:i:3:p:353-370
    DOI: 10.1007/s10589-007-9120-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-007-9120-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-007-9120-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cerrone, C. & Cerulli, R. & Raiconi, A., 2014. "Relations, models and a memetic approach for three degree-dependent spanning tree problems," European Journal of Operational Research, Elsevier, vol. 232(3), pages 442-453.
    2. Massinissa Merabet & Miklos Molnar & Sylvain Durand, 2018. "ILP formulation of the degree-constrained minimum spanning hierarchy problem," Journal of Combinatorial Optimization, Springer, vol. 36(3), pages 789-811, October.
    3. Mercedes Landete & Alfredo Marín & José Luis Sainz-Pardo, 2017. "Decomposition methods based on articulation vertices for degree-dependent spanning tree problems," Computational Optimization and Applications, Springer, vol. 68(3), pages 749-773, December.
    4. Francesco Carrabs & Raffaele Cerulli & Manlio Gaudioso & Monica Gentili, 2013. "Lower and upper bounds for the spanning tree with minimum branch vertices," Computational Optimization and Applications, Springer, vol. 56(2), pages 405-438, October.
    5. Marín, Alfredo, 2015. "Exact and heuristic solutions for the Minimum Number of Branch Vertices Spanning Tree Problem," European Journal of Operational Research, Elsevier, vol. 245(3), pages 680-689.
    6. Rafael A. Melo & Phillippe Samer & Sebastián Urrutia, 2016. "An effective decomposition approach and heuristics to generate spanning trees with a small number of branch vertices," Computational Optimization and Applications, Springer, vol. 65(3), pages 821-844, December.
    7. Jorge Moreno & Yuri Frota & Simone Martins, 2018. "An exact and heuristic approach for the d-minimum branch vertices problem," Computational Optimization and Applications, Springer, vol. 71(3), pages 829-855, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:42:y:2009:i:3:p:353-370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.