IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v71y2018i3d10.1007_s10589-018-0027-x.html
   My bibliography  Save this article

An exact and heuristic approach for the d-minimum branch vertices problem

Author

Listed:
  • Jorge Moreno

    (Universidade Federal Fluminense)

  • Yuri Frota

    (Universidade Federal Fluminense)

  • Simone Martins

    (Universidade Federal Fluminense)

Abstract

Given a connected graph $$G=(V,E)$$ G = ( V , E ) , the d-Minimum Branch Vertices (d-MBV) problem consists in finding a spanning tree of G with the minimum number of vertices with degree strictly greater than d. We developed a Miller–Tucker–Zemlin based formulation with valid inequalities for this problem. The results obtained for different values of d show the effectiveness of the proposed method, which has solved several instances faster than previous methods. Also, an heuristic is proposed for this problem, that was tested on several instances of the Minimum Branch Vertices problem, which is the d-MBV problem, when $$d = 2$$ d = 2 .

Suggested Citation

  • Jorge Moreno & Yuri Frota & Simone Martins, 2018. "An exact and heuristic approach for the d-minimum branch vertices problem," Computational Optimization and Applications, Springer, vol. 71(3), pages 829-855, December.
  • Handle: RePEc:spr:coopap:v:71:y:2018:i:3:d:10.1007_s10589-018-0027-x
    DOI: 10.1007/s10589-018-0027-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-018-0027-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-018-0027-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mercedes Landete & Alfredo Marín & José Luis Sainz-Pardo, 2017. "Decomposition methods based on articulation vertices for degree-dependent spanning tree problems," Computational Optimization and Applications, Springer, vol. 68(3), pages 749-773, December.
    2. R. Cerulli & M. Gentili & A. Iossa, 2009. "Bounded-degree spanning tree problems: models and new algorithms," Computational Optimization and Applications, Springer, vol. 42(3), pages 353-370, April.
    3. Rafael A. Melo & Phillippe Samer & Sebastián Urrutia, 2016. "An effective decomposition approach and heuristics to generate spanning trees with a small number of branch vertices," Computational Optimization and Applications, Springer, vol. 65(3), pages 821-844, December.
    4. Francesco Carrabs & Raffaele Cerulli & Manlio Gaudioso & Monica Gentili, 2013. "Lower and upper bounds for the spanning tree with minimum branch vertices," Computational Optimization and Applications, Springer, vol. 56(2), pages 405-438, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mercedes Landete & Alfredo Marín & José Luis Sainz-Pardo, 2017. "Decomposition methods based on articulation vertices for degree-dependent spanning tree problems," Computational Optimization and Applications, Springer, vol. 68(3), pages 749-773, December.
    2. Cerrone, C. & Cerulli, R. & Raiconi, A., 2014. "Relations, models and a memetic approach for three degree-dependent spanning tree problems," European Journal of Operational Research, Elsevier, vol. 232(3), pages 442-453.
    3. Rafael A. Melo & Phillippe Samer & Sebastián Urrutia, 2016. "An effective decomposition approach and heuristics to generate spanning trees with a small number of branch vertices," Computational Optimization and Applications, Springer, vol. 65(3), pages 821-844, December.
    4. Marín, Alfredo, 2015. "Exact and heuristic solutions for the Minimum Number of Branch Vertices Spanning Tree Problem," European Journal of Operational Research, Elsevier, vol. 245(3), pages 680-689.
    5. Francesco Carrabs & Raffaele Cerulli & Ciriaco D’Ambrosio & Federica Laureana, 2021. "The Generalized Minimum Branch Vertices Problem: Properties and Polyhedral Analysis," Journal of Optimization Theory and Applications, Springer, vol. 188(2), pages 356-377, February.
    6. Francesco Carrabs & Raffaele Cerulli & Manlio Gaudioso & Monica Gentili, 2013. "Lower and upper bounds for the spanning tree with minimum branch vertices," Computational Optimization and Applications, Springer, vol. 56(2), pages 405-438, October.
    7. Antonino Chiarello & Manlio Gaudioso & Marcello Sammarra, 2018. "Truck synchronization at single door cross-docking terminals," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(2), pages 395-447, March.
    8. Mercedes Landete & José Luis Sainz-Pardo, 2022. "The Domatic Partition Problem in Separable Graphs," Mathematics, MDPI, vol. 10(4), pages 1-19, February.
    9. Massinissa Merabet & Miklos Molnar & Sylvain Durand, 2018. "ILP formulation of the degree-constrained minimum spanning hierarchy problem," Journal of Combinatorial Optimization, Springer, vol. 36(3), pages 789-811, October.
    10. Melo, Rafael A. & Queiroz, Michell F. & Ribeiro, Celso C., 2021. "Compact formulations and an iterated local search-based matheuristic for the minimum weighted feedback vertex set problem," European Journal of Operational Research, Elsevier, vol. 289(1), pages 75-92.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:71:y:2018:i:3:d:10.1007_s10589-018-0027-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.