An effective decomposition approach and heuristics to generate spanning trees with a small number of branch vertices
Author
Abstract
Suggested Citation
DOI: 10.1007/s10589-016-9850-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Cerrone, C. & Cerulli, R. & Raiconi, A., 2014. "Relations, models and a memetic approach for three degree-dependent spanning tree problems," European Journal of Operational Research, Elsevier, vol. 232(3), pages 442-453.
- R. Cerulli & M. Gentili & A. Iossa, 2009. "Bounded-degree spanning tree problems: models and new algorithms," Computational Optimization and Applications, Springer, vol. 42(3), pages 353-370, April.
- Francesco Carrabs & Raffaele Cerulli & Manlio Gaudioso & Monica Gentili, 2013. "Lower and upper bounds for the spanning tree with minimum branch vertices," Computational Optimization and Applications, Springer, vol. 56(2), pages 405-438, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mercedes Landete & Alfredo Marín & José Luis Sainz-Pardo, 2017. "Decomposition methods based on articulation vertices for degree-dependent spanning tree problems," Computational Optimization and Applications, Springer, vol. 68(3), pages 749-773, December.
- Jorge Moreno & Yuri Frota & Simone Martins, 2018. "An exact and heuristic approach for the d-minimum branch vertices problem," Computational Optimization and Applications, Springer, vol. 71(3), pages 829-855, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Marín, Alfredo, 2015. "Exact and heuristic solutions for the Minimum Number of Branch Vertices Spanning Tree Problem," European Journal of Operational Research, Elsevier, vol. 245(3), pages 680-689.
- Mercedes Landete & Alfredo Marín & José Luis Sainz-Pardo, 2017. "Decomposition methods based on articulation vertices for degree-dependent spanning tree problems," Computational Optimization and Applications, Springer, vol. 68(3), pages 749-773, December.
- Cerrone, C. & Cerulli, R. & Raiconi, A., 2014. "Relations, models and a memetic approach for three degree-dependent spanning tree problems," European Journal of Operational Research, Elsevier, vol. 232(3), pages 442-453.
- Jorge Moreno & Yuri Frota & Simone Martins, 2018. "An exact and heuristic approach for the d-minimum branch vertices problem," Computational Optimization and Applications, Springer, vol. 71(3), pages 829-855, December.
- Francesco Carrabs & Raffaele Cerulli & Manlio Gaudioso & Monica Gentili, 2013. "Lower and upper bounds for the spanning tree with minimum branch vertices," Computational Optimization and Applications, Springer, vol. 56(2), pages 405-438, October.
- Singh, Kavita & Sundar, Shyam, 2019. "A hybrid steady-state genetic algorithm for the min-degree constrained minimum spanning tree problem," European Journal of Operational Research, Elsevier, vol. 276(1), pages 88-105.
- Weinand, Jann Michael & Kleinebrahm, Max & McKenna, Russell & Mainzer, Kai & Fichtner, Wolf, 2019. "Developing a combinatorial optimisation approach to design district heating networks based on deep geothermal energy," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Francesco Carrabs & Raffaele Cerulli & Ciriaco D’Ambrosio & Federica Laureana, 2021. "The Generalized Minimum Branch Vertices Problem: Properties and Polyhedral Analysis," Journal of Optimization Theory and Applications, Springer, vol. 188(2), pages 356-377, February.
- Antonino Chiarello & Manlio Gaudioso & Marcello Sammarra, 2018. "Truck synchronization at single door cross-docking terminals," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(2), pages 395-447, March.
- Massinissa Merabet & Miklos Molnar & Sylvain Durand, 2018. "ILP formulation of the degree-constrained minimum spanning hierarchy problem," Journal of Combinatorial Optimization, Springer, vol. 36(3), pages 789-811, October.
- Melo, Rafael A. & Queiroz, Michell F. & Ribeiro, Celso C., 2021. "Compact formulations and an iterated local search-based matheuristic for the minimum weighted feedback vertex set problem," European Journal of Operational Research, Elsevier, vol. 289(1), pages 75-92.
More about this item
Keywords
Minimum branch vertices; Spanning tree; Graph decomposition; Heuristics; Branch and cut; Combinatorial optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:65:y:2016:i:3:d:10.1007_s10589-016-9850-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.