IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v231y2013i3p745-756.html
   My bibliography  Save this article

Adaptive and robust radiation therapy optimization for lung cancer

Author

Listed:
  • Chan, Timothy C.Y.
  • Mišić, Velibor V.

Abstract

A previous approach to robust intensity-modulated radiation therapy (IMRT) treatment planning for moving tumors in the lung involves solving a single planning problem before the start of treatment and using the resulting solution in all of the subsequent treatment sessions. In this paper, we develop an adaptive robust optimization approach to IMRT treatment planning for lung cancer, where information gathered in prior treatment sessions is used to update the uncertainty set and guide the reoptimization of the treatment for the next session. Such an approach allows for the estimate of the uncertain effect to improve as the treatment goes on and represents a generalization of existing robust optimization and adaptive radiation therapy methodologies. Our method is computationally tractable, as it involves solving a sequence of linear optimization problems. We present computational results for a lung cancer patient case and show that using our adaptive robust method, it is possible to attain an improvement over the traditional robust approach in both tumor coverage and organ sparing simultaneously. We also prove that under certain conditions our adaptive robust method is asymptotically optimal, which provides insight into the performance observed in our computational study. The essence of our method – solving a sequence of single-stage robust optimization problems, with the uncertainty set updated each time – can potentially be applied to other problems that involve multi-stage decisions to be made under uncertainty.

Suggested Citation

  • Chan, Timothy C.Y. & Mišić, Velibor V., 2013. "Adaptive and robust radiation therapy optimization for lung cancer," European Journal of Operational Research, Elsevier, vol. 231(3), pages 745-756.
  • Handle: RePEc:eee:ejores:v:231:y:2013:i:3:p:745-756
    DOI: 10.1016/j.ejor.2013.06.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713004724
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.06.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. Edwin Romeijn & Ravindra K. Ahuja & James F. Dempsey & Arvind Kumar, 2006. "A New Linear Programming Approach to Radiation Therapy Treatment Planning Problems," Operations Research, INFORMS, vol. 54(2), pages 201-216, April.
    2. Geng Deng & Michael C. Ferris, 2008. "Neuro-dynamic programming for fractionated radiotherapy planning," Springer Optimization and Its Applications, in: Carlos J. S. Alves & Panos M. Pardalos & Luis Nunes Vicente (ed.), Optimization in Medicine, pages 47-70, Springer.
    3. Thomas Bortfeld & Timothy C. Y. Chan & Alexei Trofimov & John N. Tsitsiklis, 2008. "Robust Management of Motion Uncertainty in Intensity-Modulated Radiation Therapy," Operations Research, INFORMS, vol. 56(6), pages 1461-1473, December.
    4. H. Romeijn & James Dempsey, 2008. "Rejoinder on: Intensity modulated radiation therapy treatment plan optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 256-257, December.
    5. Mustafa Sir & Marina Epelman & Stephen Pollock, 2012. "Stochastic programming for off-line adaptive radiotherapy," Annals of Operations Research, Springer, vol. 196(1), pages 767-797, July.
    6. H. Romeijn & James Dempsey, 2008. "Intensity modulated radiation therapy treatment plan optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 215-243, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Velibor V Mišić & Timothy C Y Chan, 2015. "The Perils of Adapting to Dose Errors in Radiation Therapy," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-16, May.
    2. Saghafian, Soroush & Trichakis, Nikolaos & Zhu, Ruihao & Shih, Helen A., 2019. "Joint Patient Selection and Scheduling under No-Shows: Theory and Application in Proton Therapy," Working Paper Series rwp19-019, Harvard University, John F. Kennedy School of Government.
    3. Mehdi Karimi & Somayeh Moazeni & Levent Tunçel, 2018. "A Utility Theory Based Interactive Approach to Robustness in Linear Optimization," Journal of Global Optimization, Springer, vol. 70(4), pages 811-842, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danielle A. Ripsman & Thomas G. Purdie & Timothy C. Y. Chan & Houra Mahmoudzadeh, 2022. "Robust Direct Aperture Optimization for Radiation Therapy Treatment Planning," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2017-2038, July.
    2. Misic, V.V. & Aleman, D.M. & Sharpe, M.B., 2010. "Neighborhood search approaches to non-coplanar beam orientation optimization for total marrow irradiation using IMRT," European Journal of Operational Research, Elsevier, vol. 205(3), pages 522-527, September.
    3. Fatemeh Saberian & Archis Ghate & Minsun Kim, 2017. "Spatiotemporally Optimal Fractionation in Radiotherapy," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 422-437, August.
    4. Ehsan Salari & H. Edwin Romeijn, 2012. "Quantifying the Trade-off Between IMRT Treatment Plan Quality and Delivery Efficiency Using Direct Aperture Optimization," INFORMS Journal on Computing, INFORMS, vol. 24(4), pages 518-533, November.
    5. Rennen, G. & van Dam, E.R. & den Hertog, D., 2009. "Enhancement of Sandwich Algorithms for Approximating Higher Dimensional Convex Pareto Sets," Other publications TiSEM e2255959-6691-4ef1-88a4-5, Tilburg University, School of Economics and Management.
    6. Wei Chen & Yixin Lu & Liangfei Qiu & Subodha Kumar, 2021. "Designing Personalized Treatment Plans for Breast Cancer," Information Systems Research, INFORMS, vol. 32(3), pages 932-949, September.
    7. Thomas Bortfeld & Jagdish Ramakrishnan & John N. Tsitsiklis & Jan Unkelbach, 2015. "Optimization of Radiation Therapy Fractionation Schedules in the Presence of Tumor Repopulation," INFORMS Journal on Computing, INFORMS, vol. 27(4), pages 788-803, November.
    8. Gijs Rennen & Edwin R. van Dam & Dick den Hertog, 2011. "Enhancement of Sandwich Algorithms for Approximating Higher-Dimensional Convex Pareto Sets," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 493-517, November.
    9. Arkajyoti Roy & Shaunak S. Dabadghao & Ahmadreza Marandi, 2024. "Value of intermediate imaging in adaptive robust radiotherapy planning to manage radioresistance," Annals of Operations Research, Springer, vol. 339(3), pages 1307-1328, August.
    10. Masoud Zarepisheh & Linda Hong & Ying Zhou & Qijie Huang & Jie Yang & Gourav Jhanwar & Hai D. Pham & Pınar Dursun & Pengpeng Zhang & Margie A. Hunt & Gig S. Mageras & Jonathan T. Yang & Yoshiya (Josh), 2022. "Automated and Clinically Optimal Treatment Planning for Cancer Radiotherapy," Interfaces, INFORMS, vol. 52(1), pages 69-89, January.
    11. Mehdi Karimi & Somayeh Moazeni & Levent Tunçel, 2018. "A Utility Theory Based Interactive Approach to Robustness in Linear Optimization," Journal of Global Optimization, Springer, vol. 70(4), pages 811-842, April.
    12. Ali Adibi & Ehsan Salari, 2022. "Scalable Optimization Methods for Incorporating Spatiotemporal Fractionation into Intensity-Modulated Radiotherapy Planning," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1240-1256, March.
    13. Chan, Timothy C.Y. & Mahmoudzadeh, Houra & Purdie, Thomas G., 2014. "A robust-CVaR optimization approach with application to breast cancer therapy," European Journal of Operational Research, Elsevier, vol. 238(3), pages 876-885.
    14. Rasmus Bokrantz & Anders Forsgren, 2013. "An Algorithm for Approximating Convex Pareto Surfaces Based on Dual Techniques," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 377-393, May.
    15. Z. Taşkın & J. Smith & H. Romeijn, 2012. "Mixed-integer programming techniques for decomposing IMRT fluence maps using rectangular apertures," Annals of Operations Research, Springer, vol. 196(1), pages 799-818, July.
    16. Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
    17. Jalalimanesh, Ammar & Shahabi Haghighi, Hamidreza & Ahmadi, Abbas & Soltani, Madjid, 2017. "Simulation-based optimization of radiotherapy: Agent-based modeling and reinforcement learning," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 133(C), pages 235-248.
    18. Dursun, Pınar & Taşkın, Z. Caner & Altınel, İ. Kuban, 2019. "The determination of optimal treatment plans for Volumetric Modulated Arc Therapy (VMAT)," European Journal of Operational Research, Elsevier, vol. 272(1), pages 372-388.
    19. Dunbar, Michelle & O’Brien, Ricky & Froyland, Gary, 2020. "Optimising lung imaging for cancer radiation therapy," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1038-1052.
    20. Fabio Vitor & Todd Easton, 2018. "The double pivot simplex method," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(1), pages 109-137, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:231:y:2013:i:3:p:745-756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.