IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v196y2012i1p767-79710.1007-s10479-010-0779-x.html
   My bibliography  Save this article

Stochastic programming for off-line adaptive radiotherapy

Author

Listed:
  • Mustafa Sir
  • Marina Epelman
  • Stephen Pollock

Abstract

In intensity-modulated radiotherapy (IMRT), a treatment is designed to deliver high radiation doses to tumors, while avoiding the healthy tissue. Optimization-based treatment planning often produces sharp dose gradients between tumors and healthy tissue. Random shifts during treatment can cause significant differences between the dose in the “optimized” plan and the actual dose delivered to a patient. An IMRT treatment plan is delivered as a series of small daily dosages, or fractions, over a period of time (typically 35 days). It has recently become technically possible to measure variations in patient setup and the delivered doses after each fraction. We develop an optimization framework, which exploits the dynamic nature of radiotherapy and information gathering by adapting the treatment plan in response to temporal variations measured during the treatment course of a individual patient. The resulting (suboptimal) control policies, which re-optimize before each fraction, include two approximate dynamic programming schemes: certainty equivalent control (CEC) and open-loop feedback control (OLFC). Computational experiments show that resulting individualized adaptive radiotherapy plans promise to provide a considerable improvement compared to non-adaptive treatment plans, while remaining computationally feasible to implement. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • Mustafa Sir & Marina Epelman & Stephen Pollock, 2012. "Stochastic programming for off-line adaptive radiotherapy," Annals of Operations Research, Springer, vol. 196(1), pages 767-797, July.
  • Handle: RePEc:spr:annopr:v:196:y:2012:i:1:p:767-797:10.1007/s10479-010-0779-x
    DOI: 10.1007/s10479-010-0779-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-010-0779-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-010-0779-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eva Lee & Tim Fox & Ian Crocker, 2003. "Integer Programming Applied to Intensity-Modulated Radiation Therapy Treatment Planning," Annals of Operations Research, Springer, vol. 119(1), pages 165-181, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas Bortfeld & Jagdish Ramakrishnan & John N. Tsitsiklis & Jan Unkelbach, 2015. "Optimization of Radiation Therapy Fractionation Schedules in the Presence of Tumor Repopulation," INFORMS Journal on Computing, INFORMS, vol. 27(4), pages 788-803, November.
    2. Mehdi Karimi & Somayeh Moazeni & Levent Tunçel, 2018. "A Utility Theory Based Interactive Approach to Robustness in Linear Optimization," Journal of Global Optimization, Springer, vol. 70(4), pages 811-842, April.
    3. Chan, Timothy C.Y. & Mišić, Velibor V., 2013. "Adaptive and robust radiation therapy optimization for lung cancer," European Journal of Operational Research, Elsevier, vol. 231(3), pages 745-756.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
    2. Eva K. Lee, 2004. "Generating Cutting Planes for Mixed Integer Programming Problems in a Parallel Computing Environment," INFORMS Journal on Computing, INFORMS, vol. 16(1), pages 3-26, February.
    3. Dursun, Pınar & Taşkın, Z. Caner & Altınel, İ. Kuban, 2019. "The determination of optimal treatment plans for Volumetric Modulated Arc Therapy (VMAT)," European Journal of Operational Research, Elsevier, vol. 272(1), pages 372-388.
    4. Dunbar, Michelle & O’Brien, Ricky & Froyland, Gary, 2020. "Optimising lung imaging for cancer radiation therapy," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1038-1052.
    5. Z. Caner Taşkın & J. Cole Smith & H. Edwin Romeijn & James F. Dempsey, 2010. "Optimal Multileaf Collimator Leaf Sequencing in IMRT Treatment Planning," Operations Research, INFORMS, vol. 58(3), pages 674-690, June.
    6. H. Rocha & J. Dias & B. Ferreira & M. Lopes, 2013. "Selection of intensity modulated radiation therapy treatment beam directions using radial basis functions within a pattern search methods framework," Journal of Global Optimization, Springer, vol. 57(4), pages 1065-1089, December.
    7. Ali Tuncel & Felisa Preciado & Ronald Rardin & Mark Langer & Jean-Philippe Richard, 2012. "Strong valid inequalities for fluence map optimization problem under dose-volume restrictions," Annals of Operations Research, Springer, vol. 196(1), pages 819-840, July.
    8. Thomas Bortfeld & Timothy C. Y. Chan & Alexei Trofimov & John N. Tsitsiklis, 2008. "Robust Management of Motion Uncertainty in Intensity-Modulated Radiation Therapy," Operations Research, INFORMS, vol. 56(6), pages 1461-1473, December.
    9. Gino J. Lim & Michael C. Ferris & Stephen J. Wright & David M. Shepard & Matthew A. Earl, 2007. "An Optimization Framework for Conformal Radiation Treatment Planning," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 366-380, August.
    10. Dionne M. Aleman & H. Edwin Romeijn & James F. Dempsey, 2009. "A Response Surface Approach to Beam Orientation Optimization in Intensity-Modulated Radiation Therapy Treatment Planning," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 62-76, February.
    11. Matthias Ehrgott & Çiğdem Güler & Horst Hamacher & Lizhen Shao, 2010. "Mathematical optimization in intensity modulated radiation therapy," Annals of Operations Research, Springer, vol. 175(1), pages 309-365, March.
    12. H. Edwin Romeijn & Ravindra K. Ahuja & James F. Dempsey & Arvind Kumar, 2006. "A New Linear Programming Approach to Radiation Therapy Treatment Planning Problems," Operations Research, INFORMS, vol. 54(2), pages 201-216, April.
    13. Gino Lim & Laleh Kardar & Wenhua Cao, 2014. "A hybrid framework for optimizing beam angles in radiation therapy planning," Annals of Operations Research, Springer, vol. 217(1), pages 357-383, June.
    14. Marc C. Robini & Feng Yang & Yuemin Zhu, 2020. "A stochastic approach to full inverse treatment planning for charged-particle therapy," Journal of Global Optimization, Springer, vol. 77(4), pages 853-893, August.
    15. Joana Dias & Humberto Rocha & Brígida Ferreira & Maria Lopes, 2014. "A genetic algorithm with neural network fitness function evaluation for IMRT beam angle optimization," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(3), pages 431-455, September.
    16. Shabbir Ahmed & Ozan Gozbasi & Martin Savelsbergh & Ian Crocker & Tim Fox & Eduard Schreibmann, 2010. "An Automated Intensity-Modulated Radiation Therapy Planning System," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 568-583, November.
    17. Sera Kahruman & Elif Ulusal & Sergiy Butenko & Illya Hicks & Kathleen Diehl, 2012. "Scheduling the adjuvant endocrine therapy for early stage breast cancer," Annals of Operations Research, Springer, vol. 196(1), pages 683-705, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:196:y:2012:i:1:p:767-797:10.1007/s10479-010-0779-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.