IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v34y2022i2p1240-1256.html
   My bibliography  Save this article

Scalable Optimization Methods for Incorporating Spatiotemporal Fractionation into Intensity-Modulated Radiotherapy Planning

Author

Listed:
  • Ali Adibi

    (Department of Industrial, Systems, and Manufacturing Engineering, Wichita State University, Wichita, Kansas 67260)

  • Ehsan Salari

    (Department of Industrial, Systems, and Manufacturing Engineering, Wichita State University, Wichita, Kansas 67260)

Abstract

It has been recently shown that an additional therapeutic gain may be achieved if a radiotherapy plan is altered over the treatment course using a new treatment paradigm referred to in the literature as spatiotemporal fractionation. Because of the nonconvex and large-scale nature of the corresponding treatment plan optimization problem, the extent of the potential therapeutic gain that may be achieved from spatiotemporal fractionation has been investigated using stylized cancer cases to circumvent the arising computational challenges. This research aims at developing scalable optimization methods to obtain high-quality spatiotemporally fractionated plans with optimality bounds for clinical cancer cases. In particular, the treatment-planning problem is formulated as a quadratically constrained quadratic program and is solved to local optimality using a constraint-generation approach, in which each subproblem is solved using sequential linear/quadratic programming methods. To obtain optimality bounds, cutting-plane and column-generation methods are combined to solve the Lagrangian relaxation of the formulation. The performance of the developed methods are tested on deidentified clinical liver and prostate cancer cases. Results show that the proposed method is capable of achieving local-optimal spatiotemporally fractionated plans with an optimality gap of around 10%–12% for cancer cases tested in this study. Summary of Contribution: The design of spatiotemporally fractionated radiotherapy plans for clinical cancer cases gives rise to a class of nonconvex and large-scale quadratically constrained quadratic programming (QCQP) problems, the solution of which requires the development of efficient models and solution methods. To address the computational challenges posed by the large-scale and nonconvex nature of the problem, we employ large-scale optimization techniques to develop scalable solution methods that find local-optimal solutions along with optimality bounds. We test the performance of the proposed methods on deidentified clinical cancer cases. The proposed methods in this study can, in principle, be applied to solve other QCQP formulations, which commonly arise in several application domains, including graph theory, power systems, and signal processing.

Suggested Citation

  • Ali Adibi & Ehsan Salari, 2022. "Scalable Optimization Methods for Incorporating Spatiotemporal Fractionation into Intensity-Modulated Radiotherapy Planning," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1240-1256, March.
  • Handle: RePEc:inm:orijoc:v:34:y:2022:i:2:p:1240-1256
    DOI: 10.1287/ijoc.2021.1070
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2021.1070
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2021.1070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fatemeh Saberian & Archis Ghate & Minsun Kim, 2017. "Spatiotemporally Optimal Fractionation in Radiotherapy," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 422-437, August.
    2. H. Romeijn & James Dempsey, 2008. "Rejoinder on: Intensity modulated radiation therapy treatment plan optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 256-257, December.
    3. H. Romeijn & James Dempsey, 2008. "Intensity modulated radiation therapy treatment plan optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 215-243, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danielle A. Ripsman & Thomas G. Purdie & Timothy C. Y. Chan & Houra Mahmoudzadeh, 2022. "Robust Direct Aperture Optimization for Radiation Therapy Treatment Planning," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2017-2038, July.
    2. Ehsan Salari & H. Edwin Romeijn, 2012. "Quantifying the Trade-off Between IMRT Treatment Plan Quality and Delivery Efficiency Using Direct Aperture Optimization," INFORMS Journal on Computing, INFORMS, vol. 24(4), pages 518-533, November.
    3. Rennen, G. & van Dam, E.R. & den Hertog, D., 2009. "Enhancement of Sandwich Algorithms for Approximating Higher Dimensional Convex Pareto Sets," Other publications TiSEM e2255959-6691-4ef1-88a4-5, Tilburg University, School of Economics and Management.
    4. Gijs Rennen & Edwin R. van Dam & Dick den Hertog, 2011. "Enhancement of Sandwich Algorithms for Approximating Higher-Dimensional Convex Pareto Sets," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 493-517, November.
    5. Chan, Timothy C.Y. & Mišić, Velibor V., 2013. "Adaptive and robust radiation therapy optimization for lung cancer," European Journal of Operational Research, Elsevier, vol. 231(3), pages 745-756.
    6. Masoud Zarepisheh & Linda Hong & Ying Zhou & Qijie Huang & Jie Yang & Gourav Jhanwar & Hai D. Pham & Pınar Dursun & Pengpeng Zhang & Margie A. Hunt & Gig S. Mageras & Jonathan T. Yang & Yoshiya (Josh), 2022. "Automated and Clinically Optimal Treatment Planning for Cancer Radiotherapy," Interfaces, INFORMS, vol. 52(1), pages 69-89, January.
    7. Misic, V.V. & Aleman, D.M. & Sharpe, M.B., 2010. "Neighborhood search approaches to non-coplanar beam orientation optimization for total marrow irradiation using IMRT," European Journal of Operational Research, Elsevier, vol. 205(3), pages 522-527, September.
    8. Fatemeh Saberian & Archis Ghate & Minsun Kim, 2017. "Spatiotemporally Optimal Fractionation in Radiotherapy," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 422-437, August.
    9. Rasmus Bokrantz & Anders Forsgren, 2013. "An Algorithm for Approximating Convex Pareto Surfaces Based on Dual Techniques," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 377-393, May.
    10. Ali Ajdari & Fatemeh Saberian & Archis Ghate, 2020. "A Theoretical Framework for Learning Tumor Dose-Response Uncertainty in Individualized Spatiobiologically Integrated Radiotherapy," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 930-951, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:2:p:1240-1256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.