IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v34y2022i4p2017-2038.html
   My bibliography  Save this article

Robust Direct Aperture Optimization for Radiation Therapy Treatment Planning

Author

Listed:
  • Danielle A. Ripsman

    (Department of Management Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada)

  • Thomas G. Purdie

    (Princess Margaret Cancer Centre, Toronto, Ontario M5G 2C1, Canada)

  • Timothy C. Y. Chan

    (Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada)

  • Houra Mahmoudzadeh

    (Department of Management Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada)

Abstract

Intensity-modulated radiation therapy (IMRT) allows for the design of customized, highly conformal treatments for cancer patients. Creating IMRT treatment plans, however, is a mathematically complex process, which is often tackled in multiple, simpler stages. This sequential approach typically separates radiation dose requirements from mechanical deliverability considerations, which may result in suboptimal treatment quality. For patient health to be considered paramount, holistic models must address these plan elements concurrently, eliminating quality loss between stages. This combined direct aperture optimization (DAO) approach is rarely paired with uncertainty mitigation techniques, such as robust optimization, because of the inherent complexity of both parts. This paper outlines a robust DAO (RDAO) model and discusses novel methodologies for efficiently integrating salient constraints. Because the highly complex RDAO model is difficult to solve, an original candidate plan generation (CPG) heuristic is proposed. The CPG produces rapid, high-quality, feasible plans, which are immediately clinically viable and can also be used to generate a feasible incumbent solution for warm-starting the RDAO model. Computational results obtained using clinical patient data sets with motion uncertainty show the benefit of incorporating the CPG, in terms of both the first incumbent solution and final output plan quality. Summary of Contribution: This paper describes the derivation, implementation, and solution of a large-scale robust direct aperture optimization model for the problem of intensity-modulated radiation therapy planning for cancer treatment. The contribution to operations research lies in the design of a novel mixed-integer programming model that describes all salient mechanical and clinical deliverability requirements for modern delivery equipment. Because of the large-scale nature of the resulting model, a novel tractable heuristic for generating high-quality, feasible treatment plans, as well as warm starts for the full model, is proposed and demonstrated on five clinical patient data sets.

Suggested Citation

  • Danielle A. Ripsman & Thomas G. Purdie & Timothy C. Y. Chan & Houra Mahmoudzadeh, 2022. "Robust Direct Aperture Optimization for Radiation Therapy Treatment Planning," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2017-2038, July.
  • Handle: RePEc:inm:orijoc:v:34:y:2022:i:4:p:2017-2038
    DOI: 10.1287/ijoc.2022.1167
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2022.1167
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2022.1167?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas Bortfeld & Timothy C. Y. Chan & Alexei Trofimov & John N. Tsitsiklis, 2008. "Robust Management of Motion Uncertainty in Intensity-Modulated Radiation Therapy," Operations Research, INFORMS, vol. 56(6), pages 1461-1473, December.
    2. C. Cromvik & M. Patriksson, 2010. "On the Robustness of Global Optima and Stationary Solutions to Stochastic Mathematical Programs with Equilibrium Constraints, Part 2: Applications," Journal of Optimization Theory and Applications, Springer, vol. 144(3), pages 479-500, March.
    3. H. Romeijn & James Dempsey, 2008. "Rejoinder on: Intensity modulated radiation therapy treatment plan optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 256-257, December.
    4. Chan, Timothy C.Y. & Mahmoudzadeh, Houra & Purdie, Thomas G., 2014. "A robust-CVaR optimization approach with application to breast cancer therapy," European Journal of Operational Research, Elsevier, vol. 238(3), pages 876-885.
    5. Dimitris Bertsimas & Omid Nohadani & Kwong Meng Teo, 2010. "Nonconvex Robust Optimization for Problems with Constraints," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 44-58, February.
    6. Fatemeh Saberian & Archis Ghate & Minsun Kim, 2017. "Spatiotemporally Optimal Fractionation in Radiotherapy," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 422-437, August.
    7. Z. Caner Taşkın & J. Cole Smith & H. Edwin Romeijn & James F. Dempsey, 2010. "Optimal Multileaf Collimator Leaf Sequencing in IMRT Treatment Planning," Operations Research, INFORMS, vol. 58(3), pages 674-690, June.
    8. C. Cromvik & M. Patriksson, 2010. "On the Robustness of Global Optima and Stationary Solutions to Stochastic Mathematical Programs with Equilibrium Constraints, Part 1: Theory," Journal of Optimization Theory and Applications, Springer, vol. 144(3), pages 461-478, March.
    9. H. Romeijn & James Dempsey, 2008. "Intensity modulated radiation therapy treatment plan optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 215-243, December.
    10. Matthias Ehrgott & Çiğdem Güler & Horst Hamacher & Lizhen Shao, 2010. "Mathematical optimization in intensity modulated radiation therapy," Annals of Operations Research, Springer, vol. 175(1), pages 309-365, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    2. Ali Adibi & Ehsan Salari, 2022. "Scalable Optimization Methods for Incorporating Spatiotemporal Fractionation into Intensity-Modulated Radiotherapy Planning," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1240-1256, March.
    3. Chan, Timothy C.Y. & Mišić, Velibor V., 2013. "Adaptive and robust radiation therapy optimization for lung cancer," European Journal of Operational Research, Elsevier, vol. 231(3), pages 745-756.
    4. Masoud Zarepisheh & Linda Hong & Ying Zhou & Qijie Huang & Jie Yang & Gourav Jhanwar & Hai D. Pham & Pınar Dursun & Pengpeng Zhang & Margie A. Hunt & Gig S. Mageras & Jonathan T. Yang & Yoshiya (Josh), 2022. "Automated and Clinically Optimal Treatment Planning for Cancer Radiotherapy," Interfaces, INFORMS, vol. 52(1), pages 69-89, January.
    5. Ehsan Salari & H. Edwin Romeijn, 2012. "Quantifying the Trade-off Between IMRT Treatment Plan Quality and Delivery Efficiency Using Direct Aperture Optimization," INFORMS Journal on Computing, INFORMS, vol. 24(4), pages 518-533, November.
    6. Rennen, G. & van Dam, E.R. & den Hertog, D., 2009. "Enhancement of Sandwich Algorithms for Approximating Higher Dimensional Convex Pareto Sets," Other publications TiSEM e2255959-6691-4ef1-88a4-5, Tilburg University, School of Economics and Management.
    7. Misic, V.V. & Aleman, D.M. & Sharpe, M.B., 2010. "Neighborhood search approaches to non-coplanar beam orientation optimization for total marrow irradiation using IMRT," European Journal of Operational Research, Elsevier, vol. 205(3), pages 522-527, September.
    8. Dursun, Pınar & Taşkın, Z. Caner & Altınel, İ. Kuban, 2019. "The determination of optimal treatment plans for Volumetric Modulated Arc Therapy (VMAT)," European Journal of Operational Research, Elsevier, vol. 272(1), pages 372-388.
    9. Gijs Rennen & Edwin R. van Dam & Dick den Hertog, 2011. "Enhancement of Sandwich Algorithms for Approximating Higher-Dimensional Convex Pareto Sets," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 493-517, November.
    10. Watling, David P. & Hazelton, Martin L., 2018. "Asymptotic approximations of transient behaviour for day-to-day traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 90-105.
    11. Luke Mason & Vicky Mak-Hau & Andreas Ernst, 2015. "A parallel optimisation approach for the realisation problem in intensity modulated radiotherapy treatment planning," Computational Optimization and Applications, Springer, vol. 60(2), pages 441-477, March.
    12. Fatemeh Saberian & Archis Ghate & Minsun Kim, 2017. "Spatiotemporally Optimal Fractionation in Radiotherapy," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 422-437, August.
    13. Rasmus Bokrantz & Anders Forsgren, 2013. "An Algorithm for Approximating Convex Pareto Surfaces Based on Dual Techniques," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 377-393, May.
    14. Gabriele Eichfelder & Corinna Krüger & Anita Schöbel, 2017. "Decision uncertainty in multiobjective optimization," Journal of Global Optimization, Springer, vol. 69(2), pages 485-510, October.
    15. Z. Taşkın & J. Smith & H. Romeijn, 2012. "Mixed-integer programming techniques for decomposing IMRT fluence maps using rectangular apertures," Annals of Operations Research, Springer, vol. 196(1), pages 799-818, July.
    16. Turgay Ayer & Can Zhang & Anthony Bonifonte & Anne C. Spaulding & Jagpreet Chhatwal, 2019. "Prioritizing Hepatitis C Treatment in U.S. Prisons," Operations Research, INFORMS, vol. 67(3), pages 853-873, May.
    17. Semih Yalçındağ & Seda Baş Güre & Giuliana Carello & Ettore Lanzarone, 2020. "A stochastic risk-averse framework for blood donation appointment scheduling under uncertain donor arrivals," Health Care Management Science, Springer, vol. 23(4), pages 535-555, December.
    18. Wei Chen & Yixin Lu & Liangfei Qiu & Subodha Kumar, 2021. "Designing Personalized Treatment Plans for Breast Cancer," Information Systems Research, INFORMS, vol. 32(3), pages 932-949, September.
    19. Wang, Fan & Zhang, Chao & Zhang, Hui & Xu, Liang, 2021. "Short-term physician rescheduling model with feature-driven demand for mental disorders outpatients," Omega, Elsevier, vol. 105(C).
    20. Oylum S¸eker & Mucahit Cevik & Merve Bodur & Young Lee & Mark Ruschin, 2023. "A Multiobjective Approach for Sector Duration Optimization in Stereotactic Radiosurgery Treatment Planning," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 248-264, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:4:p:2017-2038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.