IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v53y2019i4d10.1007_s10614-018-9833-6.html
   My bibliography  Save this article

Possibilistic Moment Models for Multi-period Portfolio Selection with Fuzzy Returns

Author

Listed:
  • Yong-Jun Liu

    (South China University of Technology)

  • Wei-Guo Zhang

    (South China University of Technology)

Abstract

The aim of this paper is to investigate the effects of higher moments on multi-period portfolio selection with fuzzy returns. This paper gives the definitions of possibilistic mean and variance about the product of multiple fuzzy numbers. Based on these definitions, three multi-period fuzzy portfolio optimization models are proposed. The proposed models aim to maximize terminal wealth and minimize terminal risk by taking into account some realistic constraints including higher moments, budget constraint, round-lot constraint, cardinality constraint and bound constraint. To ensure the selection of the best solutions, a novel fuzzy programming approach-based self-adaptive differential evolution algorithm is designed to solve the proposed models. A numerical example is given to demonstrate the application of the proposed models. Computational results show that the designed algorithm is effective for solving complex portfolio selection model with realistic constraints.

Suggested Citation

  • Yong-Jun Liu & Wei-Guo Zhang, 2019. "Possibilistic Moment Models for Multi-period Portfolio Selection with Fuzzy Returns," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1657-1686, April.
  • Handle: RePEc:kap:compec:v:53:y:2019:i:4:d:10.1007_s10614-018-9833-6
    DOI: 10.1007/s10614-018-9833-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-018-9833-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-018-9833-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Walter Briec & Kristiaan Kerstens & Octave Jokung, 2007. "Mean-Variance-Skewness Portfolio Performance Gauging: A General Shortage Function and Dual Approach," Management Science, INFORMS, vol. 53(1), pages 135-149, January.
    2. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    3. Liu, Yong-Jun & Zhang, Wei-Guo, 2013. "Fuzzy portfolio optimization model under real constraints," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 704-711.
    4. Chen, Wei, 2015. "Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 125-139.
    5. Yu, Jing-Rung & Lee, Wen-Yi, 2011. "Portfolio rebalancing model using multiple criteria," European Journal of Operational Research, Elsevier, vol. 209(2), pages 166-175, March.
    6. Zhang, Wei-Guo & Liu, Yong-Jun & Xu, Wei-Jun, 2012. "A possibilistic mean-semivariance-entropy model for multi-period portfolio selection with transaction costs," European Journal of Operational Research, Elsevier, vol. 222(2), pages 341-349.
    7. DiTraglia, Francis J. & Gerlach, Jeffrey R., 2013. "Portfolio selection: An extreme value approach," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 305-323.
    8. Hjalmarsson, Erik & Manchev, Petar, 2012. "Characteristic-based mean-variance portfolio choice," Journal of Banking & Finance, Elsevier, vol. 36(5), pages 1392-1401.
    9. Zhang, Wei-Guo & Xiao, Wei-Lin & Xu, Wei-Jun, 2010. "A possibilistic portfolio adjusting model with new added assets," Economic Modelling, Elsevier, vol. 27(1), pages 208-213, January.
    10. Leung, Mark T. & Daouk, Hazem & Chen, An-Sing, 2001. "Using investment portfolio return to combine forecasts: A multiobjective approach," European Journal of Operational Research, Elsevier, vol. 134(1), pages 84-102, October.
    11. Ballestero, E. & Gunther, M. & Pla-Santamaria, D. & Stummer, C., 2007. "Portfolio selection under strict uncertainty: A multi-criteria methodology and its application to the Frankfurt and Vienna Stock Exchanges," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1476-1487, September.
    12. Guo, Sini & Yu, Lean & Li, Xiang & Kar, Samarjit, 2016. "Fuzzy multi-period portfolio selection with different investment horizons," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1026-1035.
    13. Utz, Sebastian & Wimmer, Maximilian & Hirschberger, Markus & Steuer, Ralph E., 2014. "Tri-criterion inverse portfolio optimization with application to socially responsible mutual funds," European Journal of Operational Research, Elsevier, vol. 234(2), pages 491-498.
    14. Li, Xiang & Qin, Zhongfeng & Kar, Samarjit, 2010. "Mean-variance-skewness model for portfolio selection with fuzzy returns," European Journal of Operational Research, Elsevier, vol. 202(1), pages 239-247, April.
    15. Kim, Thomas, 2015. "Does individual-stock skewness/coskewness reflect portfolio risk?," Finance Research Letters, Elsevier, vol. 15(C), pages 167-174.
    16. Díaz, Antonio & González, María de la O & Navarro, Eliseo & Skinner, Frank S., 2009. "An evaluation of contingent immunization," Journal of Banking & Finance, Elsevier, vol. 33(10), pages 1874-1883, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ameer Tamoor Khan & Xinwei Cao & Shuai Li, 2023. "Using Quadratic Interpolated Beetle Antennae Search for Higher Dimensional Portfolio Selection Under Cardinality Constraints," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1413-1435, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong-Jun Liu & Wei-Guo Zhang, 2018. "Multiperiod Fuzzy Portfolio Selection Optimization Model Based on Possibility Theory," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(03), pages 941-968, May.
    2. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    3. K. Liagkouras & K. Metaxiotis, 2019. "Improving the performance of evolutionary algorithms: a new approach utilizing information from the evolutionary process and its application to the fuzzy portfolio optimization problem," Annals of Operations Research, Springer, vol. 272(1), pages 119-137, January.
    4. Briec, Walter & Kerstens, Kristiaan & Van de Woestyne, Ignace, 2011. "Portfolio Selection with Skewness: A Comparison and a Generalized Two Fund Separation Result," Working Papers 2011/09, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    5. Briec, Walter & Kerstens, Kristiaan & Van de Woestyne, Ignace, 2013. "Portfolio selection with skewness: A comparison of methods and a generalized one fund result," European Journal of Operational Research, Elsevier, vol. 230(2), pages 412-421.
    6. Aouni, Belaid & Colapinto, Cinzia & La Torre, Davide, 2014. "Financial portfolio management through the goal programming model: Current state-of-the-art," European Journal of Operational Research, Elsevier, vol. 234(2), pages 536-545.
    7. Liu, Yong-Jun & Zhang, Wei-Guo & Zhang, Pu, 2013. "A multi-period portfolio selection optimization model by using interval analysis," Economic Modelling, Elsevier, vol. 33(C), pages 113-119.
    8. Guo, Sini & Gu, Jia-Wen & Ching, Wai-Ki, 2021. "Adaptive online portfolio selection with transaction costs," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1074-1086.
    9. Masoud Rahiminezhad Galankashi & Farimah Mokhatab Rafiei & Maryam Ghezelbash, 2020. "Portfolio selection: a fuzzy-ANP approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-34, December.
    10. Carroll, Rachael & Conlon, Thomas & Cotter, John & Salvador, Enrique, 2017. "Asset allocation with correlation: A composite trade-off," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1164-1180.
    11. Yu, Jing-Rung & Lee, Wen-Yi, 2011. "Portfolio rebalancing model using multiple criteria," European Journal of Operational Research, Elsevier, vol. 209(2), pages 166-175, March.
    12. Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
    13. Valeria V. Lakshina, 2019. "Do Portfolio Investors Need To Consider The Asymmetry Of Returns On The Russian Stock Market?," HSE Working papers WP BRP 75/FE/2019, National Research University Higher School of Economics.
    14. Zhang, Wei-Guo & Liu, Yong-Jun & Xu, Wei-Jun, 2012. "A possibilistic mean-semivariance-entropy model for multi-period portfolio selection with transaction costs," European Journal of Operational Research, Elsevier, vol. 222(2), pages 341-349.
    15. Lakshina, Valeriya, 2020. "Do portfolio investors need to consider the asymmetry of returns on the Russian stock market?," The Journal of Economic Asymmetries, Elsevier, vol. 21(C).
    16. Krzysztof Piasecki & Joanna Siwek, 2018. "The portfolio problem with present value modelled by a discrete trapezoidal fuzzy number," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 28(1), pages 57-74.
    17. Wei Chen & Yun Wang & Mukesh Kumar Mehlawat, 2018. "A hybrid FA–SA algorithm for fuzzy portfolio selection with transaction costs," Annals of Operations Research, Springer, vol. 269(1), pages 129-147, October.
    18. Wei Chen & Yuxi Gai & Pankaj Gupta, 2018. "Efficiency evaluation of fuzzy portfolio in different risk measures via DEA," Annals of Operations Research, Springer, vol. 269(1), pages 103-127, October.
    19. Najafi, Amir Abbas & Mushakhian, Siamak, 2015. "Multi-stage stochastic mean–semivariance–CVaR portfolio optimization under transaction costs," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 445-458.
    20. Sadefo Kamdem, Jules & Tassak Deffo, Christian & Fono, Louis Aimé, 2012. "Moments and semi-moments for fuzzy portfolio selection," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 517-530.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:53:y:2019:i:4:d:10.1007_s10614-018-9833-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.