IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v220y2012i2p328-337.html
   My bibliography  Save this article

Variable neighborhood search for metric dimension and minimal doubly resolving set problems

Author

Listed:
  • Mladenović, Nenad
  • Kratica, Jozef
  • Kovačević-Vujčić, Vera
  • Čangalović, Mirjana

Abstract

In this paper, two similar NP-hard optimization problems on graphs are considered: the metric dimension problem and the problem of determining a doubly resolving set with the minimum cardinality. Both are present in many diverse areas, including network discovery and verification, robot navigation, and chemistry. For each problem, a new mathematical programming formulation is proposed. For solving more realistic large-size instances, a variable neighborhood search based heuristic is designed. An extensive experimental comparison on five different types of instances indicates that the VNS approach consistently outperforms a genetic algorithm, the only existing heuristic in the literature designed for solving those problems.

Suggested Citation

  • Mladenović, Nenad & Kratica, Jozef & Kovačević-Vujčić, Vera & Čangalović, Mirjana, 2012. "Variable neighborhood search for metric dimension and minimal doubly resolving set problems," European Journal of Operational Research, Elsevier, vol. 220(2), pages 328-337.
  • Handle: RePEc:eee:ejores:v:220:y:2012:i:2:p:328-337
    DOI: 10.1016/j.ejor.2012.02.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712001361
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.02.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mladenovic, Nenad & Urosevic, Dragan & Pérez-Brito, Dionisio & García-González, Carlos G., 2010. "Variable neighbourhood search for bandwidth reduction," European Journal of Operational Research, Elsevier, vol. 200(1), pages 14-27, January.
    2. András Sebő & Eric Tannier, 2004. "On Metric Generators of Graphs," Mathematics of Operations Research, INFORMS, vol. 29(2), pages 383-393, May.
    3. Tatjana Davidović & Pierre Hansen & Nenad Mladenović, 2005. "Permutation-Based Genetic, Tabu, And Variable Neighborhood Search Heuristics For Multiprocessor Scheduling With Communication Delays," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 297-326.
    4. Ilic, Aleksandar & Urosevic, Dragan & Brimberg, Jack & Mladenovic, Nenad, 2010. "A general variable neighborhood search for solving the uncapacitated single allocation p-hub median problem," European Journal of Operational Research, Elsevier, vol. 206(2), pages 289-300, October.
    5. Muller, Laurent Flindt & Spoorendonk, Simon & Pisinger, David, 2012. "A hybrid adaptive large neighborhood search heuristic for lot-sizing with setup times," European Journal of Operational Research, Elsevier, vol. 218(3), pages 614-623.
    6. Jozef Kratica & Vera Kovačević-Vujčić & Mirjana Čangalović, 2009. "Computing the metric dimension of graphs by genetic algorithms," Computational Optimization and Applications, Springer, vol. 44(2), pages 343-361, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Yiyong & Zhang, Renqian & Zhao, Qiuhong & Kaku, Ikou & Xu, Yuchun, 2014. "A variable neighborhood search with an effective local search for uncapacitated multilevel lot-sizing problems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 102-114.
    2. González, Antonio & Hernando, Carmen & Mora, Mercè, 2018. "Metric-locating-dominating sets of graphs for constructing related subsets of vertices," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 449-456.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdessamad Ait El Cadi & Omar Souissi & Rabie Ben Atitallah & Nicolas Belanger & Abdelhakim Artiba, 2018. "Mathematical programming models for scheduling in a CPU/FPGA architecture with heterogeneous communication delays," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 629-640, March.
    2. Vadlamani, Satish & Hosseini, Seyedmohsen, 2014. "A novel heuristic approach for solving aircraft landing problem with single runway," Journal of Air Transport Management, Elsevier, vol. 40(C), pages 144-148.
    3. Reinhardt, Line Blander & Clausen, Tommy & Pisinger, David, 2013. "Synchronized dial-a-ride transportation of disabled passengers at airports," European Journal of Operational Research, Elsevier, vol. 225(1), pages 106-117.
    4. Ismael González Yero, 2020. "The Simultaneous Strong Resolving Graph and the Simultaneous Strong Metric Dimension of Graph Families," Mathematics, MDPI, vol. 8(1), pages 1-11, January.
    5. Rune Larsen & Dario Pacino, 2021. "A heuristic and a benchmark for the stowage planning problem," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 94-122, March.
    6. Olivera Janković & Stefan Mišković & Zorica Stanimirović & Raca Todosijević, 2017. "Novel formulations and VNS-based heuristics for single and multiple allocation p-hub maximal covering problems," Annals of Operations Research, Springer, vol. 259(1), pages 191-216, December.
    7. Lamb, John D., 2012. "Variable neighbourhood structures for cycle location problems," European Journal of Operational Research, Elsevier, vol. 223(1), pages 15-26.
    8. Seokgi Lee & Mona Issabakhsh & Hyun Woo Jeon & Seong Wook Hwang & Byung Chung, 2020. "Idle time and capacity control for a single machine scheduling problem with dynamic electricity pricing," Operations Management Research, Springer, vol. 13(3), pages 197-217, December.
    9. Nader Azizi & Navneet Vidyarthi & Satyaveer S. Chauhan, 2018. "Modelling and analysis of hub-and-spoke networks under stochastic demand and congestion," Annals of Operations Research, Springer, vol. 264(1), pages 1-40, May.
    10. Soylu, Banu & Katip, Hatice, 2019. "A multiobjective hub-airport location problem for an airline network design," European Journal of Operational Research, Elsevier, vol. 277(2), pages 412-425.
    11. Sedlar, Jelena & Škrekovski, Riste, 2021. "Bounds on metric dimensions of graphs with edge disjoint cycles," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    12. Nader Ghaffarinasab & Bahar Y. Kara, 2019. "Benders Decomposition Algorithms for Two Variants of the Single Allocation Hub Location Problem," Networks and Spatial Economics, Springer, vol. 19(1), pages 83-108, March.
    13. Mladenović, Nenad & Urošević, Dragan & Hanafi, Saı¨d & Ilić, Aleksandar, 2012. "A general variable neighborhood search for the one-commodity pickup-and-delivery travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 220(1), pages 270-285.
    14. Knor, Martin & Majstorović, Snježana & Masa Toshi, Aoden Teo & Škrekovski, Riste & Yero, Ismael G., 2021. "Graphs with the edge metric dimension smaller than the metric dimension," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    15. Silvio Alexandre de Araujo & Bert De Reyck & Zeger Degraeve & Ioannis Fragkos & Raf Jans, 2015. "Period Decompositions for the Capacitated Lot Sizing Problem with Setup Times," INFORMS Journal on Computing, INFORMS, vol. 27(3), pages 431-448, August.
    16. Chen, Haoxun, 2015. "Fix-and-optimize and variable neighborhood search approaches for multi-level capacitated lot sizing problems," Omega, Elsevier, vol. 56(C), pages 25-36.
    17. Guan, Jian & Lin, Geng, 2016. "Hybridizing variable neighborhood search with ant colony optimization for solving the single row facility layout problem," European Journal of Operational Research, Elsevier, vol. 248(3), pages 899-909.
    18. Tofighian, Aliasghar & Arshadi khamseh, Alireza, 2021. "A Bi objective uncapacitated multiple allocation p-hub median problem in public administration considering economies of scales," Research in Transportation Economics, Elsevier, vol. 90(C).
    19. J. Fabian Meier & Uwe Clausen, 2018. "Solving Single Allocation Hub Location Problems on Euclidean Data," Transportation Science, INFORMS, vol. 52(5), pages 1141-1155, October.
    20. Wandelt, Sebastian & Sun, Xiaoqian & Zhang, Anming, 2023. "AI-driven assistants for education and research? A case study on ChatGPT for air transport management," Journal of Air Transport Management, Elsevier, vol. 113(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:220:y:2012:i:2:p:328-337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.