IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i4p560-d1586693.html
   My bibliography  Save this article

Metric Locations in Pseudotrees: A Survey and New Results

Author

Listed:
  • José Cáceres

    (Departamento de Matemáticas, Universidad de Almería, ctra. Sacramento s/n, 04120 Almería, Spain
    These authors contributed equally to this work.)

  • Ignacio M. Pelayo

    (Departament of Matemàtiques, Universitat Politècnica de Catalunya, c/Esteve Terradas nº8, 08860 Castelldefels, Spain
    These authors contributed equally to this work.)

Abstract

This paper presents a comprehensive review of the literature on the original concept of metric location, along with its various adaptations and extensions that have been developed over time. Given that determining a minimum location set is generally NP-hard, we focus on analyzing the behavior of these sets within specific graph families, including paths, cycles, trees and unicyclic graphs. In addition to synthesizing existing knowledge, we contribute new findings and insights to the field, advancing the understanding of metric location problems in these structured graph classes.

Suggested Citation

  • José Cáceres & Ignacio M. Pelayo, 2025. "Metric Locations in Pseudotrees: A Survey and New Results," Mathematics, MDPI, vol. 13(4), pages 1-28, February.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:4:p:560-:d:1586693
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/4/560/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/4/560/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. András Sebő & Eric Tannier, 2004. "On Metric Generators of Graphs," Mathematics of Operations Research, INFORMS, vol. 29(2), pages 383-393, May.
    2. Sedlar, Jelena & Škrekovski, Riste, 2022. "Metric dimensions vs. cyclomatic number of graphs with minimum degree at least two," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    3. Dalal Alrowaili & Zohaib Zahid & Imran Siddique & Sohail Zafar & Muhammad Ahsan & Muhammad Sarwar Sindhu & Gohar Ali, 2022. "On the Constant Edge Resolvability of Some Unicyclic and Multicyclic Graphs," Journal of Mathematics, Hindawi, vol. 2022, pages 1-9, July.
    4. Kelenc, Aleksander & Kuziak, Dorota & Taranenko, Andrej & G. Yero, Ismael, 2017. "Mixed metric dimension of graphs," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 429-438.
    5. Meiqin Wei & Jun Yue & Lily Chen, 2022. "The effect of vertex and edge deletion on the edge metric dimension of graphs," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 331-342, August.
    6. Mladenović, Nenad & Kratica, Jozef & Kovačević-Vujčić, Vera & Čangalović, Mirjana, 2012. "Variable neighborhood search for metric dimension and minimal doubly resolving set problems," European Journal of Operational Research, Elsevier, vol. 220(2), pages 328-337.
    7. González, Antonio & Hernando, Carmen & Mora, Mercè, 2018. "Metric-locating-dominating sets of graphs for constructing related subsets of vertices," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 449-456.
    8. Martin Knor & Jelena Sedlar & Riste Škrekovski, 2022. "Remarks on the Vertex and the Edge Metric Dimension of 2-Connected Graphs," Mathematics, MDPI, vol. 10(14), pages 1-16, July.
    9. Dorota Kuziak, 2020. "The Strong Resolving Graph and the Strong Metric Dimension of Cactus Graphs," Mathematics, MDPI, vol. 8(8), pages 1-14, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sedlar, Jelena & Škrekovski, Riste, 2021. "Bounds on metric dimensions of graphs with edge disjoint cycles," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    2. Martin Knor & Jelena Sedlar & Riste Škrekovski, 2022. "Remarks on the Vertex and the Edge Metric Dimension of 2-Connected Graphs," Mathematics, MDPI, vol. 10(14), pages 1-16, July.
    3. Juan Wang & Lianying Miao & Yunlong Liu, 2019. "Characterization of n -Vertex Graphs of Metric Dimension n ? 3 by Metric Matrix," Mathematics, MDPI, vol. 7(5), pages 1-13, May.
    4. Rashad Ismail & Asim Nadeem & Kamran Azhar, 2024. "Local Metric Resolvability of Generalized Petersen Graphs," Mathematics, MDPI, vol. 12(14), pages 1-14, July.
    5. González, Antonio & Hernando, Carmen & Mora, Mercè, 2018. "Metric-locating-dominating sets of graphs for constructing related subsets of vertices," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 449-456.
    6. Sedlar, Jelena & Škrekovski, Riste, 2022. "Metric dimensions vs. cyclomatic number of graphs with minimum degree at least two," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    7. Nie, Kairui & Xu, Kexiang, 2023. "Mixed metric dimension of some graphs," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    8. Sedlar, Jelena & Škrekovski, Riste, 2021. "Extremal mixed metric dimension with respect to the cyclomatic number," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    9. Asad Khan & Ghulam Haidar & Naeem Abbas & Murad Ul Islam Khan & Azmat Ullah Khan Niazi & Asad Ul Islam Khan, 2023. "Metric Dimensions of Bicyclic Graphs," Mathematics, MDPI, vol. 11(4), pages 1-17, February.
    10. Enqiang Zhu & Shaoxiang Peng & Chanjuan Liu, 2022. "Identifying the Exact Value of the Metric Dimension and Edge Dimension of Unicyclic Graphs," Mathematics, MDPI, vol. 10(19), pages 1-14, September.
    11. Ismael González Yero, 2020. "The Simultaneous Strong Resolving Graph and the Simultaneous Strong Metric Dimension of Graph Families," Mathematics, MDPI, vol. 8(1), pages 1-11, January.
    12. Knor, Martin & Majstorović, Snježana & Masa Toshi, Aoden Teo & Škrekovski, Riste & Yero, Ismael G., 2021. "Graphs with the edge metric dimension smaller than the metric dimension," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    13. Guo, Yubao & Volkmann, Lutz & Wang, Yun, 2025. "Signed total Roman domination and domatic numbers in graphs," Applied Mathematics and Computation, Elsevier, vol. 487(C).
    14. Sakander Hayat & Asad Khan & Yubin Zhong, 2022. "On Resolvability- and Domination-Related Parameters of Complete Multipartite Graphs," Mathematics, MDPI, vol. 10(11), pages 1-16, May.
    15. Muhammad Azeem & Muhammad Kamran Jamil & Yilun Shang, 2023. "Notes on the Localization of Generalized Hexagonal Cellular Networks," Mathematics, MDPI, vol. 11(4), pages 1-15, February.
    16. Dorota Kuziak, 2020. "The Strong Resolving Graph and the Strong Metric Dimension of Cactus Graphs," Mathematics, MDPI, vol. 8(8), pages 1-14, August.
    17. Shahid Imran & Muhammad Kamran Siddiqui & Muhammad Imran & Muhammad Hussain, 2018. "On Metric Dimensions of Symmetric Graphs Obtained by Rooted Product," Mathematics, MDPI, vol. 6(10), pages 1-16, October.
    18. Ali N. A. Koam & Ali Ahmad & Muhammad Ibrahim & Muhammad Azeem, 2021. "Edge Metric and Fault-Tolerant Edge Metric Dimension of Hollow Coronoid," Mathematics, MDPI, vol. 9(12), pages 1-14, June.
    19. Michael Hallaway & Cong X. Kang & Eunjeong Yi, 2014. "On metric dimension of permutation graphs," Journal of Combinatorial Optimization, Springer, vol. 28(4), pages 814-826, November.
    20. David G. L. Wang & Monica M. Y. Wang & Shiqiang Zhang, 2022. "Determining the edge metric dimension of the generalized Petersen graph P(n, 3)," Journal of Combinatorial Optimization, Springer, vol. 43(2), pages 460-496, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:4:p:560-:d:1586693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.