IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v220y2012i1p238-250.html
   My bibliography  Save this article

Modeling influenza progression within a continuous-attribute heterogeneous population

Author

Listed:
  • Teytelman, Anna
  • Larson, Richard C.

Abstract

We consider three attributes of an individual that are critical in determining the temporal dynamics of pandemic influenza: social activity, proneness to infection, and proneness to shed virus and spread infection. These attributes differ by individual, resulting in a heterogeneous population. We develop discrete-time models that depict the evolution of the disease in the presence of such population heterogeneity. For every individual, the value for each of the three describing attributes is viewed as an experimental value of a continuous random variable. The methodology is simple yet general, extending more traditional discrete compartmental models that depict population heterogeneity. Illustrative numerical examples show how individuals who have much larger-than-average values for one or more of the attributes drive the influenza wave, especially in the early generations of the pandemic. This heterogeneity-driven pandemic physics carries important policy implications. We conclude by using contact data in four European countries to demonstrate empirical uses of our model.

Suggested Citation

  • Teytelman, Anna & Larson, Richard C., 2012. "Modeling influenza progression within a continuous-attribute heterogeneous population," European Journal of Operational Research, Elsevier, vol. 220(1), pages 238-250.
  • Handle: RePEc:eee:ejores:v:220:y:2012:i:1:p:238-250
    DOI: 10.1016/j.ejor.2012.01.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712000471
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.01.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nigmatulina, Karima R. & Larson, Richard C., 2009. "Living with influenza: Impacts of government imposed and voluntarily selected interventions," European Journal of Operational Research, Elsevier, vol. 195(2), pages 613-627, June.
    2. Richard C. Larson, 2007. "Simple Models of Influenza Progression Within a Heterogeneous Population," Operations Research, INFORMS, vol. 55(3), pages 399-412, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "Literature review: The vaccine supply chain," European Journal of Operational Research, Elsevier, vol. 268(1), pages 174-192.
    2. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "The benefits of combining early aspecific vaccination with later specific vaccination," European Journal of Operational Research, Elsevier, vol. 271(2), pages 606-619.
    3. Ozgur M. Araz & Mayteé Cruz-Aponte & Fernando A. Wilson & Brock W. Hanisch & Ruth S. Margalit, 2022. "An Analytic Framework for Effective Public Health Program Design Using Correctional Facilities," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 113-128, January.
    4. Naveed Chehrazi & Lauren E. Cipriano & Eva A. Enns, 2019. "Dynamics of Drug Resistance: Optimal Control of an Infectious Disease," Operations Research, INFORMS, vol. 67(3), pages 619-650, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naveed Chehrazi & Lauren E. Cipriano & Eva A. Enns, 2019. "Dynamics of Drug Resistance: Optimal Control of an Infectious Disease," Operations Research, INFORMS, vol. 67(3), pages 619-650, May.
    2. Savachkin, Alex & Uribe, Andrés, 2012. "Dynamic redistribution of mitigation resources during influenza pandemics," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 33-45.
    3. Ozgur M. Araz & Mayteé Cruz-Aponte & Fernando A. Wilson & Brock W. Hanisch & Ruth S. Margalit, 2022. "An Analytic Framework for Effective Public Health Program Design Using Correctional Facilities," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 113-128, January.
    4. Firas Rifai, 2018. "Transfer of Knowhow and Experiences from Commercial Logistics into Humanitarian Logistics to Improve Rescue Missions in Disaster Areas," Journal of Management and Sustainability, Canadian Center of Science and Education, vol. 8(3), pages 1-63, August.
    5. James M. Bloodgood & Jeffrey S. Hornsby & Matthew Rutherford & Richard G. McFarland, 2017. "The role of network density and betweenness centrality in diffusing new venture legitimacy: an epidemiological approach," International Entrepreneurship and Management Journal, Springer, vol. 13(2), pages 525-552, June.
    6. Guihua Wang, 2022. "Stay at home to stay safe: Effectiveness of stay‐at‐home orders in containing the COVID‐19 pandemic," Production and Operations Management, Production and Operations Management Society, vol. 31(5), pages 2289-2305, May.
    7. Shui-Lien Chen & Hsiang-Ting Hsu & Richard Chinomona, 2023. "How Tourists’ Perceived Risk Affects Behavioral Intention through Crisis Communication in the Post-COVID-19 Era," Mathematics, MDPI, vol. 11(4), pages 1-18, February.
    8. Rezapour, Shabnam & Baghaian, Atefe & Naderi, Nazanin & Sarmiento, Juan P., 2023. "Infection transmission and prevention in metropolises with heterogeneous and dynamic populations," European Journal of Operational Research, Elsevier, vol. 304(1), pages 113-138.
    9. Xiaoyan Xu & Suresh P. Sethi & Sai‐Ho Chung & Tsan‐Ming Choi, 2023. "Reforming global supply chain management under pandemics: The GREAT‐3Rs framework," Production and Operations Management, Production and Operations Management Society, vol. 32(2), pages 524-546, February.
    10. Nigmatulina, Karima R. & Larson, Richard C., 2009. "Living with influenza: Impacts of government imposed and voluntarily selected interventions," European Journal of Operational Research, Elsevier, vol. 195(2), pages 613-627, June.
    11. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "The benefits of combining early aspecific vaccination with later specific vaccination," European Journal of Operational Research, Elsevier, vol. 271(2), pages 606-619.
    12. Rachael M. Jones & Elodie Adida, 2013. "Selecting Nonpharmaceutical Interventions for Influenza," Risk Analysis, John Wiley & Sons, vol. 33(8), pages 1473-1488, August.
    13. Osman Y. Özaltın & Oleg A. Prokopyev & Andrew J. Schaefer & Mark S. Roberts, 2011. "Optimizing the Societal Benefits of the Annual Influenza Vaccine: A Stochastic Programming Approach," Operations Research, INFORMS, vol. 59(5), pages 1131-1143, October.
    14. Zhang, Jianghua & Long, Daniel Zhuoyu & Li, Yuchen, 2023. "A reliable emergency logistics network for COVID-19 considering the uncertain time-varying demands," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    15. Amankwah-Amoah, Joseph, 2020. "Note: Mayday, Mayday, Mayday! Responding to environmental shocks: Insights on global airlines’ responses to COVID-19," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    16. Ali Ekici & Pınar Keskinocak & Julie L. Swann, 2014. "Modeling Influenza Pandemic and Planning Food Distribution," Manufacturing & Service Operations Management, INFORMS, vol. 16(1), pages 11-27, February.
    17. Yaesoubi, Reza & Cohen, Ted, 2011. "Generalized Markov models of infectious disease spread: A novel framework for developing dynamic health policies," European Journal of Operational Research, Elsevier, vol. 215(3), pages 679-687, December.
    18. James M. Bloodgood & Jeffrey S. Hornsby & Matthew Rutherford & Richard G. McFarland, 0. "The role of network density and betweenness centrality in diffusing new venture legitimacy: an epidemiological approach," International Entrepreneurship and Management Journal, Springer, vol. 0, pages 1-28.
    19. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "Literature review: The vaccine supply chain," European Journal of Operational Research, Elsevier, vol. 268(1), pages 174-192.
    20. Choudhury, Nishat Alam & Ramkumar, M. & Schoenherr, Tobias & Singh, Shalabh, 2023. "The role of operations and supply chain management during epidemics and pandemics: Potential and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).

    More about this item

    Keywords

    Influenza modeling; Heterogeneity; H1N1; Super-spreaders;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:220:y:2012:i:1:p:238-250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.