IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v58y2007i6d10.1057_palgrave.jors.2602187.html
   My bibliography  Save this article

Forecasting S-shaped diffusion processes via response modelling methodology

Author

Listed:
  • H Shore

    (Ben-Gurion University)

  • D Benson-Karhi

    (Ben-Gurion University)

Abstract

Diffusion processes abound in various areas of corporate activities, such as the time-dependent behaviour of cumulative demand of a new product, or the adoption rate of a technological innovation. In most cases, the proportion of the population that has adopted the new product by time t behaves like an S-shaped curve, which resembles the sigmoid curve typical to many known statistical distribution functions. This analogy has motivated the common use of the latter for forecasting purposes. Recently, a new methodology for empirical modelling has been developed, termed response modelling methodology (RMM). The error distribution of the RMM model has been shown to model well variously shaped distribution functions, and may therefore be adequate to forecast sigmoid-curve processes. In particular, RMM may be applied to forecast S-shaped diffusion processes. In this paper, forty-seven data sets, assembled from published sources by Meade and Islam, are used to compare the accuracy and the stability of RMM-generated forecasts, relative to current commonly applied models. Results show that in most comparisons RMM forecasts outperform those based on any individually selected distributional model.

Suggested Citation

  • H Shore & D Benson-Karhi, 2007. "Forecasting S-shaped diffusion processes via response modelling methodology," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(6), pages 720-728, June.
  • Handle: RePEc:pal:jorsoc:v:58:y:2007:i:6:d:10.1057_palgrave.jors.2602187
    DOI: 10.1057/palgrave.jors.2602187
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2602187
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2602187?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nigel Meade & Towhidul Islam, 1998. "Technological Forecasting---Model Selection, Model Stability, and Combining Models," Management Science, INFORMS, vol. 44(8), pages 1115-1130, August.
    2. Young, Peg & Ord, J. Keith, 1989. "Model selection and estimation for technological growth curves," International Journal of Forecasting, Elsevier, vol. 5(4), pages 501-513.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chun, Young H., 2012. "Monte Carlo analysis of estimation methods for the prediction of customer response patterns in direct marketing," European Journal of Operational Research, Elsevier, vol. 217(3), pages 673-678.
    2. Chang, Ching-Ter & Lin, Teng-Chiao, 2009. "Interval goal programming for S-shaped penalty function," European Journal of Operational Research, Elsevier, vol. 199(1), pages 9-20, November.
    3. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Feng-Shang & Chu, Wen-Lin, 2010. "Diffusion models of mobile telephony," Journal of Business Research, Elsevier, vol. 63(5), pages 497-501, May.
    2. Islam, Towhidul & Fiebig, Denzil G. & Meade, Nigel, 2002. "Modelling multinational telecommunications demand with limited data," International Journal of Forecasting, Elsevier, vol. 18(4), pages 605-624.
    3. Ashish Sood & Gareth M. James & Gerard J. Tellis & Ji Zhu, 2012. "Predicting the Path of Technological Innovation: SAW vs. Moore, Bass, Gompertz, and Kryder," Marketing Science, INFORMS, vol. 31(6), pages 964-979, November.
    4. Berrin Aytac & S. Wu, 2013. "Characterization of demand for short life-cycle technology products," Annals of Operations Research, Springer, vol. 203(1), pages 255-277, March.
    5. Krishnan, Trichy V. & Feng, Shanfei & Jain, Dipak C., 2023. "Peak sales time prediction in new product sales: Can a product manager rely on it?," Journal of Business Research, Elsevier, vol. 165(C).
    6. Nigel Meade & Towhidul Islam, 1998. "Technological Forecasting---Model Selection, Model Stability, and Combining Models," Management Science, INFORMS, vol. 44(8), pages 1115-1130, August.
    7. Kivi, Antero & Smura, Timo & Töyli, Juuso, 2012. "Technology product evolution and the diffusion of new product features," Technological Forecasting and Social Change, Elsevier, vol. 79(1), pages 107-126.
    8. Fok, Dennis & Franses, Philip Hans, 2007. "Modeling the diffusion of scientific publications," Journal of Econometrics, Elsevier, vol. 139(2), pages 376-390, August.
    9. J Mingers, 2008. "Exploring the dynamics of journal citations: Modelling with s-curves," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1013-1025, August.
    10. Mandal, A. & Huang, W.T. & Bhandari, S.K. & Basu, A., 2011. "Goodness-of-fit testing in growth curve models: A general approach based on finite differences," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1086-1098, February.
    11. Lee, Chul-Yong & Huh, Sung-Yoon, 2017. "Forecasting the diffusion of renewable electricity considering the impact of policy and oil prices: The case of South Korea," Applied Energy, Elsevier, vol. 197(C), pages 29-39.
    12. Snellman, Jussi & Vesala, Jukka, 1999. "Forecasting the elecronification of payments with learning curves : The case of Finland," Research Discussion Papers 8/1999, Bank of Finland.
    13. repec:zbw:bofrdp:99_008 is not listed on IDEAS
    14. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
    15. Zhiqiang Zheng & Balaji Padmanabhan, 2007. "Constructing Ensembles from Data Envelopment Analysis," INFORMS Journal on Computing, INFORMS, vol. 19(4), pages 486-496, November.
    16. B Aytac & S D Wu, 2011. "Modelling high-tech product life cycles with short-term demand information: a case study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 425-432, March.
    17. Jha, Ashutosh & Saha, Debashis, 2020. "“Forecasting and analysing the characteristics of 3G and 4G mobile broadband diffusion in India: A comparative evaluation of Bass, Norton-Bass, Gompertz, and logistic growth models”," Technological Forecasting and Social Change, Elsevier, vol. 152(C).
    18. Karakaya, Emrah, 2014. "Finite Element Model of the Innovation Diffusion: An Application to Photovoltaic Systems," INDEK Working Paper Series 2014/6, Royal Institute of Technology, Department of Industrial Economics and Management.
    19. Satoh, Daisuke, 2021. "Discrete Gompertz equation and model selection between Gompertz and logistic models," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1192-1211.
    20. Madden, Gary & Coble-Neal, Grant & Dalzell, Brian, 2004. "A dynamic model of mobile telephony subscription incorporating a network effect," Telecommunications Policy, Elsevier, vol. 28(2), pages 133-144, March.
    21. Marina V. Evseeva, 2020. "Technological differentiation in the development of the Ural macroregion’s subjects," Journal of New Economy, Ural State University of Economics, vol. 21(3), pages 132-157, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:58:y:2007:i:6:d:10.1057_palgrave.jors.2602187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.