IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v211y2011i1p15-25.html
   My bibliography  Save this article

Scheduling just-in-time part supply for mixed-model assembly lines

Author

Listed:
  • Boysen, Nils
  • Bock, Stefan

Abstract

With increasing cost competition and product variety, providing an efficient just-in-time (JIT) supply has become one of the greatest challenges in the use of mixed-model assembly line production systems. In the present paper, therefore, we propose a new approach for scheduling JIT part supply from a central storage center. Usually, materials are stored in boxes that are allotted to the consumptive stations of the line by a forklift. For such a real-world problem, a new model, a complexity proof as well as different exact and heuristic solution procedures are provided. Furthermore, a direct comparison with a simple two-bin kanban system is provided. Such a system is currently applied in the real-world industrial process that motivates our research. It becomes obvious that this policy is considerably outperformed according to the resulting inventory- and [alpha]-service levels. Moreover, at the interface between logistics and assembly operations, strategic management implications are obtained. Specifically, based on the new approach, it is the first time a statistical analysis is being made as to whether widespread Level Scheduling policies, which are well-known from the Toyota Production System, indeed facilitate material supply. Note that in the literature it is frequently claimed that this causality exists.

Suggested Citation

  • Boysen, Nils & Bock, Stefan, 2011. "Scheduling just-in-time part supply for mixed-model assembly lines," European Journal of Operational Research, Elsevier, vol. 211(1), pages 15-25, May.
  • Handle: RePEc:eee:ejores:v:211:y:2011:i:1:p:15-25
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00731-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Thomas L. Morin & Roy E. Marsten, 1976. "Branch-and-Bound Strategies for Dynamic Programming," Operations Research, INFORMS, vol. 24(4), pages 611-627, August.
    2. Robert L. Carraway & Robert L. Schmidt, 1991. "Note---An Improved Discrete Dynamic Programming Algorithm for Allocating Resources Among Interdependent Projects," Management Science, INFORMS, vol. 37(9), pages 1195-1200, September.
    3. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2007. "A classification of assembly line balancing problems," European Journal of Operational Research, Elsevier, vol. 183(2), pages 674-693, December.
    4. Solnon, Christine & Cung, Van Dat & Nguyen, Alain & Artigues, Christian, 2008. "The car sequencing problem: Overview of state-of-the-art methods and industrial case-study of the ROADEF'2005 challenge problem," European Journal of Operational Research, Elsevier, vol. 191(3), pages 912-927, December.
    5. Peng Si Ow & Thomas E. Morton, 1989. "The Single Machine Early/Tardy Problem," Management Science, INFORMS, vol. 35(2), pages 177-191, February.
    6. Battini, Daria & Faccio, Maurizio & Persona, Alessandro & Sgarbossa, Fabio, 2009. "Design of the optimal feeding policy in an assembly system," International Journal of Production Economics, Elsevier, vol. 121(1), pages 233-254, September.
    7. Nils Boysen & Malte Fliedner & Armin Scholl, 2009. "Assembly line balancing: Joint precedence graphs under high product variety," IISE Transactions, Taylor & Francis Journals, vol. 41(3), pages 183-193.
    8. George Li, 1997. "Single machine earliness and tardiness scheduling," European Journal of Operational Research, Elsevier, vol. 96(3), pages 546-558, February.
    9. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2009. "Sequencing mixed-model assembly lines: Survey, classification and model critique," European Journal of Operational Research, Elsevier, vol. 192(2), pages 349-373, January.
    10. Kubiak, Wieslaw, 1993. "Minimizing variation of production rates in just-in-time systems: A survey," European Journal of Operational Research, Elsevier, vol. 66(3), pages 259-271, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boysen, Nils & Emde, Simon & Hoeck, Michael & Kauderer, Markus, 2015. "Part logistics in the automotive industry: Decision problems, literature review and research agenda," European Journal of Operational Research, Elsevier, vol. 242(1), pages 107-120.
    2. Mustapha Sali & Evren Sahin, 2016. "Line feeding optimization for Just in Time assembly lines: an application to the automotive industry," Post-Print hal-01265041, HAL.
    3. Shi, Wen & Liu, Zhixue & Shang, Jennifer & Cui, Yujia, 2013. "Multi-criteria robust design of a JIT-based cross-docking distribution center for an auto parts supply chain," European Journal of Operational Research, Elsevier, vol. 229(3), pages 695-706.
    4. Nils Boysen & Simon Emde & Konrad Stephan & Markus Weiß, 2015. "Synchronization in hub terminals with the circular arrangement problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(6), pages 454-469, September.
    5. Beixin Xia & Mingyue Zhang & Yan Gao & Jing Yang & Yunfang Peng, 2023. "Design for Optimally Routing and Scheduling a Tow Train for Just-in-Time Material Supply of Mixed-Model Assembly Lines," Sustainability, MDPI, vol. 15(19), pages 1-16, October.
    6. Stefan Fedtke & Nils Boysen & Patrick Schumacher, 2023. "In-line kitting for part feeding of assembly lines: workload balancing and storage assignment to reduce the workers’ walking effort," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(3), pages 717-758, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boysen, Nils & Scholl, Armin & Wopperer, Nico, 2012. "Resequencing of mixed-model assembly lines: Survey and research agenda," European Journal of Operational Research, Elsevier, vol. 216(3), pages 594-604.
    2. Janis Brammer & Bernhard Lutz & Dirk Neumann, 2022. "Stochastic mixed model sequencing with multiple stations using reinforcement learning and probability quantiles," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 29-56, March.
    3. Sternatz, Johannes, 2015. "The joint line balancing and material supply problem," International Journal of Production Economics, Elsevier, vol. 159(C), pages 304-318.
    4. Bautista, J. & Companys, R. & Corominas, A., 1996. "Heuristics and exact algorithms for solving the Monden problem," European Journal of Operational Research, Elsevier, vol. 88(1), pages 101-113, January.
    5. Boysen, Nils & Schulze, Philipp & Scholl, Armin, 2022. "Assembly line balancing: What happened in the last fifteen years?," European Journal of Operational Research, Elsevier, vol. 301(3), pages 797-814.
    6. Sternatz, Johannes, 2014. "Enhanced multi-Hoffmann heuristic for efficiently solving real-world assembly line balancing problems in automotive industry," European Journal of Operational Research, Elsevier, vol. 235(3), pages 740-754.
    7. Simon Emde & Lukas Polten, 2019. "Sequencing assembly lines to facilitate synchronized just-in-time part supply," Journal of Scheduling, Springer, vol. 22(6), pages 607-621, December.
    8. Emde, Simon & Boysen, Nils, 2012. "Optimally locating in-house logistics areas to facilitate JIT-supply of mixed-model assembly lines," International Journal of Production Economics, Elsevier, vol. 135(1), pages 393-402.
    9. Golle, Uli & Rothlauf, Franz & Boysen, Nils, 2014. "Car sequencing versus mixed-model sequencing: A computational study," European Journal of Operational Research, Elsevier, vol. 237(1), pages 50-61.
    10. Chen, Shih-Hsin & Chen, Min-Chih, 2013. "Addressing the advantages of using ensemble probabilistic models in Estimation of Distribution Algorithms for scheduling problems," International Journal of Production Economics, Elsevier, vol. 141(1), pages 24-33.
    11. Ioanna Makarouni & John Psarras & Eleftherios Siskos, 2015. "Interactive bicriterion decision support for a large scale industrial scheduling system," Annals of Operations Research, Springer, vol. 227(1), pages 45-61, April.
    12. Sikora, Celso Gustavo Stall, 2024. "Balancing mixed-model assembly lines for random sequences," European Journal of Operational Research, Elsevier, vol. 314(2), pages 597-611.
    13. Vincent T’kindt & Karima Bouibede-Hocine & Carl Esswein, 2007. "Counting and enumeration complexity with application to multicriteria scheduling," Annals of Operations Research, Springer, vol. 153(1), pages 215-234, September.
    14. Boysen, Nils & Emde, Simon & Hoeck, Michael & Kauderer, Markus, 2015. "Part logistics in the automotive industry: Decision problems, literature review and research agenda," European Journal of Operational Research, Elsevier, vol. 242(1), pages 107-120.
    15. Marcel Lehmann & Heinrich Kuhn, 2020. "Modeling and analyzing sequence stability in flexible automotive production systems," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 366-394, June.
    16. Florian Jaehn & Sergey Kovalev & Mikhail Y. Kovalyov & Erwin Pesch, 2014. "Multiproduct batching and scheduling with buffered rework: The case of a car paint shop," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(6), pages 458-471, September.
    17. Hanson, Robin & Finnsgård, Christian, 2014. "Impact of unit load size on in-plant materials supply efficiency," International Journal of Production Economics, Elsevier, vol. 147(PA), pages 46-52.
    18. Pei-Chann Chang & Shih-Hsin Chen & Chin-Yuan Fan & V. Mani, 2010. "Generating artificial chromosomes with probability control in genetic algorithm for machine scheduling problems," Annals of Operations Research, Springer, vol. 180(1), pages 197-211, November.
    19. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2009. "The product rate variation problem and its relevance in real world mixed-model assembly lines," European Journal of Operational Research, Elsevier, vol. 197(2), pages 818-824, September.
    20. E. C. Sewell & S. H. Jacobson, 2012. "A Branch, Bound, and Remember Algorithm for the Simple Assembly Line Balancing Problem," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 433-442, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:211:y:2011:i:1:p:15-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.