IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v207y2010i3p1203-1209.html
   My bibliography  Save this article

New strong duality results for convex programs with separable constraints

Author

Listed:
  • Jeyakumar, V.
  • Li, G.

Abstract

It is known that convex programming problems with separable inequality constraints do not have duality gaps. However, strong duality may fail for these programs because the dual programs may not attain their maximum. In this paper, we establish conditions characterizing strong duality for convex programs with separable constraints. We also obtain a sub-differential formula characterizing strong duality for convex programs with separable constraints whenever the primal problems attain their minimum. Examples are given to illustrate our results.

Suggested Citation

  • Jeyakumar, V. & Li, G., 2010. "New strong duality results for convex programs with separable constraints," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1203-1209, December.
  • Handle: RePEc:eee:ejores:v:207:y:2010:i:3:p:1203-1209
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00489-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goberna, M. A. & Lopez, M. A., 2002. "Linear semi-infinite programming theory: An updated survey," European Journal of Operational Research, Elsevier, vol. 143(2), pages 390-405, December.
    2. V. Jeyakumar, 2008. "Constraint Qualifications Characterizing Lagrangian Duality in Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 136(1), pages 31-41, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. T. D. Chuong & V. H. Mak-Hau & J. Yearwood & R. Dazeley & M.-T. Nguyen & T. Cao, 2022. "Robust Pareto solutions for convex quadratic multiobjective optimization problems under data uncertainty," Annals of Operations Research, Springer, vol. 319(2), pages 1533-1564, December.
    2. V. Jeyakumar & J. Vicente-Pérez, 2014. "Dual Semidefinite Programs Without Duality Gaps for a Class of Convex Minimax Programs," Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 735-753, September.
    3. Nguyen Minh Tung & Mai Duy, 2023. "Constraint qualifications and optimality conditions for robust nonsmooth semi-infinite multiobjective optimization problems," 4OR, Springer, vol. 21(1), pages 151-176, March.
    4. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2020. "A Unified Approach Through Image Space Analysis to Robustness in Uncertain Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 466-493, February.
    5. Jae Hyoung Lee & Gue Myung Lee, 2018. "On optimality conditions and duality theorems for robust semi-infinite multiobjective optimization problems," Annals of Operations Research, Springer, vol. 269(1), pages 419-438, October.
    6. T. D. Chuong & V. Jeyakumar & G. Li & D. Woolnough, 2021. "Exact SDP reformulations of adjustable robust linear programs with box uncertainties under separable quadratic decision rules via SOS representations of non-negativity," Journal of Global Optimization, Springer, vol. 81(4), pages 1095-1117, December.
    7. V. Jeyakumar & G. Y. Li, 2011. "Robust Duality for Fractional Programming Problems with Constraint-Wise Data Uncertainty," Journal of Optimization Theory and Applications, Springer, vol. 151(2), pages 292-303, November.
    8. Satoshi Suzuki & Daishi Kuroiwa, 2017. "Duality Theorems for Separable Convex Programming Without Qualifications," Journal of Optimization Theory and Applications, Springer, vol. 172(2), pages 669-683, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Mishra & M. Jaiswal & H. Le Thi, 2012. "Nonsmooth semi-infinite programming problem using Limiting subdifferentials," Journal of Global Optimization, Springer, vol. 53(2), pages 285-296, June.
    2. Nazih Abderrazzak Gadhi, 2019. "Necessary optimality conditions for a nonsmooth semi-infinite programming problem," Journal of Global Optimization, Springer, vol. 74(1), pages 161-168, May.
    3. Lopez, Marco & Still, Georg, 2007. "Semi-infinite programming," European Journal of Operational Research, Elsevier, vol. 180(2), pages 491-518, July.
    4. T. D. Chuong & V. Jeyakumar & G. Li, 2019. "A new bounded degree hierarchy with SOCP relaxations for global polynomial optimization and conic convex semi-algebraic programs," Journal of Global Optimization, Springer, vol. 75(4), pages 885-919, December.
    5. Hassan Bakhtiari & Hossein Mohebi, 2021. "Lagrange Multiplier Characterizations of Constrained Best Approximation with Infinite Constraints," Journal of Optimization Theory and Applications, Springer, vol. 189(3), pages 814-835, June.
    6. Mohammad R. Oskoorouchi & Hamid R. Ghaffari & Tamás Terlaky & Dionne M. Aleman, 2011. "An Interior Point Constraint Generation Algorithm for Semi-Infinite Optimization with Health-Care Application," Operations Research, INFORMS, vol. 59(5), pages 1184-1197, October.
    7. S. Rivaz & M. A. Yaghoobi & M. Hladík, 2016. "Using modified maximum regret for finding a necessarily efficient solution in an interval MOLP problem," Fuzzy Optimization and Decision Making, Springer, vol. 15(3), pages 237-253, September.
    8. Satoshi Suzuki & Daishi Kuroiwa, 2012. "Necessary and Sufficient Constraint Qualification for Surrogate Duality," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 366-377, February.
    9. Satoshi Suzuki, 2021. "Karush–Kuhn–Tucker type optimality condition for quasiconvex programming in terms of Greenberg–Pierskalla subdifferential," Journal of Global Optimization, Springer, vol. 79(1), pages 191-202, January.
    10. Satoshi Suzuki & Daishi Kuroiwa, 2013. "Some constraint qualifications for quasiconvex vector-valued systems," Journal of Global Optimization, Springer, vol. 55(3), pages 539-548, March.
    11. N. Dinh & V. Jeyakumar, 2014. "Farkas’ lemma: three decades of generalizations for mathematical optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 1-22, April.
    12. V. Jeyakumar & Guoyin Li, 2011. "Regularized Lagrangian duality for linearly constrained quadratic optimization and trust-region problems," Journal of Global Optimization, Springer, vol. 49(1), pages 1-14, January.
    13. Fabián Flores-Bazán & William Echegaray & Fernando Flores-Bazán & Eladio Ocaña, 2017. "Primal or dual strong-duality in nonconvex optimization and a class of quasiconvex problems having zero duality gap," Journal of Global Optimization, Springer, vol. 69(4), pages 823-845, December.
    14. He, Li & Huang, Guo H. & Lu, Hongwei, 2011. "Bivariate interval semi-infinite programming with an application to environmental decision-making analysis," European Journal of Operational Research, Elsevier, vol. 211(3), pages 452-465, June.
    15. P. Guo & G. Huang & L. He & H. Zhu, 2009. "Interval-parameter Two-stage Stochastic Semi-infinite Programming: Application to Water Resources Management under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 1001-1023, March.
    16. Balendu Bhooshan Upadhyay & Arnav Ghosh & Savin Treanţă, 2024. "Efficiency conditions and duality for multiobjective semi-infinite programming problems on Hadamard manifolds," Journal of Global Optimization, Springer, vol. 89(3), pages 723-744, July.
    17. Bo Wei & William B. Haskell & Sixiang Zhao, 2020. "An inexact primal-dual algorithm for semi-infinite programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(3), pages 501-544, June.
    18. D. H. Fang & Y. Zhang, 2018. "Extended Farkas’s Lemmas and Strong Dualities for Conic Programming Involving Composite Functions," Journal of Optimization Theory and Applications, Springer, vol. 176(2), pages 351-376, February.
    19. Amitabh Basu & Kipp Martin & Christopher Thomas Ryan, 2015. "Projection: A Unified Approach to Semi-Infinite Linear Programs and Duality in Convex Programming," Mathematics of Operations Research, INFORMS, vol. 40(1), pages 146-170, February.
    20. Satoshi Suzuki & Daishi Kuroiwa, 2020. "Duality Theorems for Convex and Quasiconvex Set Functions," SN Operations Research Forum, Springer, vol. 1(1), pages 1-13, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:207:y:2010:i:3:p:1203-1209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.