IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v100y2009i10p2137-2154.html
   My bibliography  Save this article

Bayesian predictive densities based on superharmonic priors for the 2-dimensional Wishart model

Author

Listed:
  • Komaki, Fumiyasu

Abstract

Bayesian predictive densities for the 2-dimensional Wishart model are investigated. The performance of predictive densities is evaluated by using the Kullback-Leibler divergence. It is proved that a Bayesian predictive density based on a prior exactly dominates that based on the Jeffreys prior if the prior density satisfies some geometric conditions. An orthogonally invariant prior is introduced and it is shown that the Bayesian predictive density based on the prior is minimax and dominates that based on the right invariant prior with respect to the triangular group.

Suggested Citation

  • Komaki, Fumiyasu, 2009. "Bayesian predictive densities based on superharmonic priors for the 2-dimensional Wishart model," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2137-2154, November.
  • Handle: RePEc:eee:jmvana:v:100:y:2009:i:10:p:2137-2154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00089-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John C. Liechty, 2004. "Bayesian correlation estimation," Biometrika, Biometrika Trust, vol. 91(1), pages 1-14, March.
    2. James Zidek, 1969. "A representation of Bayes invariant procedures in terms of Haar measure," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 21(1), pages 291-308, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oda, Hidemasa & Komaki, Fumiyasu, 2023. "Enriched standard conjugate priors and the right invariant prior for Wishart distributions," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    2. T Sei & F Komaki, 2022. "A correlation-shrinkage prior for Bayesian prediction of the two-dimensional Wishart model [Modeling covariance matrices in terms of standard deviations and correlations, with application to shrink," Biometrika, Biometrika Trust, vol. 109(4), pages 1173-1180.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kociecki, Andrzej, 2012. "Orbital Priors for Time-Series Models," MPRA Paper 42804, University Library of Munich, Germany.
    2. Bo Cai & David B. Dunson, 2006. "Bayesian Covariance Selection in Generalized Linear Mixed Models," Biometrics, The International Biometric Society, vol. 62(2), pages 446-457, June.
    3. Luigi Spezia, 2019. "Modelling covariance matrices by the trigonometric separation strategy with application to hidden Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 399-422, June.
    4. Nadja A. Leith & Richard E. Chandler, 2010. "A framework for interpreting climate model outputs," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 279-296, March.
    5. Carter, Christopher K. & Wong, Frederick & Kohn, Robert, 2011. "Constructing priors based on model size for nondecomposable Gaussian graphical models: A simulation based approach," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 871-883, May.
    6. Paolo Giordani & Xiuyan Mun & Robert Kohn, 2012. "Efficient Estimation of Covariance Matrices using Posterior Mode Multiple Shrinkage," Journal of Financial Econometrics, Oxford University Press, vol. 11(1), pages 154-192, December.
    7. Huyên Pham & Xiaoli Wei & Chao Zhou, 2022. "Portfolio diversification and model uncertainty: A robust dynamic mean‐variance approach," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 349-404, January.
    8. Wang, Y. & Daniels, M.J., 2013. "Bayesian modeling of the dependence in longitudinal data via partial autocorrelations and marginal variances," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 130-140.
    9. Bailey K. Fosdick & Adrian E. Raftery, 2012. "Estimating the Correlation in Bivariate Normal Data With Known Variances and Small Sample Sizes," The American Statistician, Taylor & Francis Journals, vol. 66(1), pages 34-41, February.
    10. Kociecki, Andrzej, 2011. "Some Remarks on Consistency and Strong Inconsistency of Bayesian Inference," MPRA Paper 28731, University Library of Munich, Germany.
    11. Anders Løland & Ragnar Bang Huseby & Nils Lid Hjort & Arnoldo Frigessi, 2013. "Statistical Corrections of Invalid Correlation Matrices," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 807-824, December.
    12. van Dijk, Bram & Paap, Richard, 2008. "Explaining individual response using aggregated data," Journal of Econometrics, Elsevier, vol. 146(1), pages 1-9, September.
    13. Gerard, David & Hoff, Peter, 2015. "Equivariant minimax dominators of the MLE in the array normal model," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 32-49.
    14. Helen Armstrong & Christopher K. Carter & Kevin K. F. Wong & Robert Kohn, 2007. "Bayesian Covariance Matrix Estimation using a Mixture of Decomposable Graphical Models," Discussion Papers 2007-13, School of Economics, The University of New South Wales.
    15. Pettenuzzo, Davide & Timmermann, Allan, 2011. "Predictability of stock returns and asset allocation under structural breaks," Journal of Econometrics, Elsevier, vol. 164(1), pages 60-78, September.
    16. Jara, Alejandro & Jose Garcia-Zattera, Maria & Lesaffre, Emmanuel, 2007. "A Dirichlet process mixture model for the analysis of correlated binary responses," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5402-5415, July.
    17. Bahar Biller & Canan G. Corlu, 2011. "Accounting for Parameter Uncertainty in Large-Scale Stochastic Simulations with Correlated Inputs," Operations Research, INFORMS, vol. 59(3), pages 661-673, June.
    18. Daniels, M.J. & Pourahmadi, M., 2009. "Modeling covariance matrices via partial autocorrelations," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2352-2363, November.
    19. Duncan Fong & Sunghoon Kim & Zhe Chen & Wayne DeSarbo, 2016. "A Bayesian Multinomial Probit MODEL FOR THE ANALYSIS OF PANEL CHOICE DATA," Psychometrika, Springer;The Psychometric Society, vol. 81(1), pages 161-183, March.
    20. Gillen, Benjamin J., 2014. "An empirical Bayesian approach to stein-optimal covariance matrix estimation," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 402-420.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:100:y:2009:i:10:p:2137-2154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.