IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v91y2004i1p1-14.html
   My bibliography  Save this article

Bayesian correlation estimation

Author

Listed:
  • John C. Liechty

Abstract

We propose prior probability models for variance-covariance matrices in order to address two important issues. First, the models allow a researcher to represent substantive prior information about the strength of correlations among a set of variables. Secondly, even in the absence of such information, the increased flexibility of the models mitigates dependence on strict parametric assumptions in standard prior models. For example, the model allows a posteriori different levels of uncertainty about correlations among different subsets of variables. We achieve this by including a clustering mechanism in the prior probability model. Clustering is with respect to variables and pairs of variables. Our approach leads to shrinkage towards a mixture structure implied by the clustering. We discuss appropriate posterior simulation schemes to implement posterior inference in the proposed models, including the evaluation of normalising constants that are functions of parameters of interest. The normalising constants result from the restriction that the correlation matrix be positive definite. We discuss examples based on simulated data, a stock return dataset and a population genetics dataset. Copyright Biometrika Trust 2004, Oxford University Press.

Suggested Citation

  • John C. Liechty, 2004. "Bayesian correlation estimation," Biometrika, Biometrika Trust, vol. 91(1), pages 1-14, March.
  • Handle: RePEc:oup:biomet:v:91:y:2004:i:1:p:1-14
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. van Dijk, Bram & Paap, Richard, 2008. "Explaining individual response using aggregated data," Journal of Econometrics, Elsevier, vol. 146(1), pages 1-9, September.
    2. Komaki, Fumiyasu, 2009. "Bayesian predictive densities based on superharmonic priors for the 2-dimensional Wishart model," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2137-2154, November.
    3. Daniels, M.J. & Pourahmadi, M., 2009. "Modeling covariance matrices via partial autocorrelations," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2352-2363, November.
    4. Duncan Fong & Sunghoon Kim & Zhe Chen & Wayne DeSarbo, 2016. "A Bayesian Multinomial Probit MODEL FOR THE ANALYSIS OF PANEL CHOICE DATA," Psychometrika, Springer;The Psychometric Society, vol. 81(1), pages 161-183, March.
    5. Helen Armstrong & Christopher K. Carter & Kevin K. F. Wong & Robert Kohn, 2007. "Bayesian Covariance Matrix Estimation using a Mixture of Decomposable Graphical Models," Discussion Papers 2007-13, School of Economics, The University of New South Wales.
    6. Paolo Giordani & Xiuyan Mun & Robert Kohn, 2012. "Efficient Estimation of Covariance Matrices using Posterior Mode Multiple Shrinkage," Journal of Financial Econometrics, Oxford University Press, vol. 11(1), pages 154-192, December.
    7. Pettenuzzo, Davide & Timmermann, Allan, 2011. "Predictability of stock returns and asset allocation under structural breaks," Journal of Econometrics, Elsevier, vol. 164(1), pages 60-78, September.
    8. Doron Avramov & Guofu Zhou, 2010. "Bayesian Portfolio Analysis," Annual Review of Financial Economics, Annual Reviews, vol. 2(1), pages 25-47, December.
    9. Jara, Alejandro & Jose Garcia-Zattera, Maria & Lesaffre, Emmanuel, 2007. "A Dirichlet process mixture model for the analysis of correlated binary responses," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5402-5415, July.
    10. Huyên Pham & Xiaoli Wei & Chao Zhou, 2022. "Portfolio diversification and model uncertainty: A robust dynamic mean‐variance approach," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 349-404, January.
    11. Anders Løland & Ragnar Bang Huseby & Nils Lid Hjort & Arnoldo Frigessi, 2013. "Statistical Corrections of Invalid Correlation Matrices," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 807-824, December.
    12. Wang, Y. & Daniels, M.J., 2013. "Bayesian modeling of the dependence in longitudinal data via partial autocorrelations and marginal variances," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 130-140.
    13. Bahar Biller & Canan G. Corlu, 2011. "Accounting for Parameter Uncertainty in Large-Scale Stochastic Simulations with Correlated Inputs," Operations Research, INFORMS, vol. 59(3), pages 661-673, June.
    14. Rufo, M.J. & Pérez, C.J. & Martín, J., 2010. "Merging experts' opinions: A Bayesian hierarchical model with mixture of prior distributions," European Journal of Operational Research, Elsevier, vol. 207(1), pages 284-289, November.
    15. Bo Cai & David B. Dunson, 2006. "Bayesian Covariance Selection in Generalized Linear Mixed Models," Biometrics, The International Biometric Society, vol. 62(2), pages 446-457, June.
    16. Cruz-Cano, Raul & Lee, Mei-Ling Ting, 2014. "Fast regularized canonical correlation analysis," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 88-100.
    17. Luigi Spezia, 2019. "Modelling covariance matrices by the trigonometric separation strategy with application to hidden Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 399-422, June.
    18. Gillen, Benjamin J., 2014. "An empirical Bayesian approach to stein-optimal covariance matrix estimation," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 402-420.
    19. Carter, Christopher K. & Wong, Frederick & Kohn, Robert, 2011. "Constructing priors based on model size for nondecomposable Gaussian graphical models: A simulation based approach," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 871-883, May.
    20. Yu, Philip L.H. & Li, W.K. & Ng, F.C., 2014. "Formulating hypothetical scenarios in correlation stress testing via a Bayesian framework," The North American Journal of Economics and Finance, Elsevier, vol. 27(C), pages 17-33.
    21. Bailey K. Fosdick & Adrian E. Raftery, 2012. "Estimating the Correlation in Bivariate Normal Data With Known Variances and Small Sample Sizes," The American Statistician, Taylor & Francis Journals, vol. 66(1), pages 34-41, February.
    22. Nadja A. Leith & Richard E. Chandler, 2010. "A framework for interpreting climate model outputs," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 279-296, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:91:y:2004:i:1:p:1-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.