IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v206y2010i3p609-613.html
   My bibliography  Save this article

No-arbitrage conditions, scenario trees, and multi-asset financial optimization

Author

Listed:
  • Geyer, Alois
  • Hanke, Michael
  • Weissensteiner, Alex

Abstract

Many numerical optimization methods use scenario trees as a discrete approximation for the true (multi-dimensional) probability distributions of the problem's random variables. Realistic specifications in financial optimization models can lead to tree sizes that quickly become computationally intractable. In this paper we focus on the two main approaches proposed in the literature to deal with this problem: scenario reduction and state aggregation. We first state necessary conditions for the node structure of a tree to rule out arbitrage. However, currently available scenario reduction algorithms do not take these conditions explicitly into account. State aggregation excludes arbitrage opportunities by relying on the risk-neutral measure. This is, however, only appropriate for pricing purposes but not for optimization. Both limitations are illustrated by numerical examples. We conclude that neither of these methods is suitable to solve financial optimization models in asset-liability or portfolio management.

Suggested Citation

  • Geyer, Alois & Hanke, Michael & Weissensteiner, Alex, 2010. "No-arbitrage conditions, scenario trees, and multi-asset financial optimization," European Journal of Operational Research, Elsevier, vol. 206(3), pages 609-613, November.
  • Handle: RePEc:eee:ejores:v:206:y:2010:i:3:p:609-613
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00221-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert Ferstl & Alex Weissensteiner, 2010. "Cash management using multi-stage stochastic programming," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 209-219.
    2. J. Michael Harrison & Stanley R. Pliska, 1981. "Martingales and Stochastic Integrals in the Theory of Continous Trading," Discussion Papers 454, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    3. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    4. Jobst, Norbert J. & Zenios, Stavros A., 2005. "On the simulation of portfolios of interest rate and credit risk sensitive securities," European Journal of Operational Research, Elsevier, vol. 161(2), pages 298-324, March.
    5. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    6. David R. Cariño & Terry Kent & David H. Myers & Celine Stacy & Mike Sylvanus & Andrew L. Turner & Kouji Watanabe & William T. Ziemba, 1994. "The Russell-Yasuda Kasai Model: An Asset/Liability Model for a Japanese Insurance Company Using Multistage Stochastic Programming," Interfaces, INFORMS, vol. 24(1), pages 29-49, February.
    7. M. A. H. Dempster & M. Germano & E. A. Medova & M. I. Rietbergen & F. Sandrini & M. Scrowston, 2007. "Designing minimum guaranteed return funds," Quantitative Finance, Taylor & Francis Journals, vol. 7(2), pages 245-256.
    8. Kjetil Høyland & Stein W. Wallace, 2001. "Generating Scenario Trees for Multistage Decision Problems," Management Science, INFORMS, vol. 47(2), pages 295-307, February.
    9. Klaassen, Pieter, 1997. "Discretized reality and spurious profits in stochastic programming models for asset/liability management," Serie Research Memoranda 0011, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    10. Klaassen, Pieter, 1997. "Discretized reality and spurious profits in stochastic programming models for asset/liability management," European Journal of Operational Research, Elsevier, vol. 101(2), pages 374-392, September.
    11. Pieter Klaassen, 2002. "Comment on "Generating Scenario Trees for Multistage Decision Problems"," Management Science, INFORMS, vol. 48(11), pages 1512-1516, November.
    12. Pieter Klaassen, 1998. "Financial Asset-Pricing Theory and Stochastic Programming Models for Asset/Liability Management: A Synthesis," Management Science, INFORMS, vol. 44(1), pages 31-48, January.
    13. Jitka Dupačová & Giorgio Consigli & Stein Wallace, 2000. "Scenarios for Multistage Stochastic Programs," Annals of Operations Research, Springer, vol. 100(1), pages 25-53, December.
    14. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    15. Alois Geyer & William T. Ziemba, 2008. "The Innovest Austrian Pension Fund Financial Planning Model InnoALM," Operations Research, INFORMS, vol. 56(4), pages 797-810, August.
    16. Jaksa Cvitanic & Fernando Zapatero, 2004. "Introduction to the Economics and Mathematics of Financial Markets," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262532654, April.
    17. M. I. Kusy & W. T. Ziemba, 1986. "A Bank Asset and Liability Management Model," Operations Research, INFORMS, vol. 34(3), pages 356-376, June.
    18. Stephen P. Bradley & Dwight B. Crane, 1972. "A Dynamic Model for Bond Portfolio Management," Management Science, INFORMS, vol. 19(2), pages 139-151, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Owadally, Iqbal & Jang, Chul & Clare, Andrew, 2021. "Optimal investment for a retirement plan with deferred annuities," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 51-62.
    2. Wong, Man Hong, 2013. "Investment models based on clustered scenario trees," European Journal of Operational Research, Elsevier, vol. 227(2), pages 314-324.
    3. Raimund M. Kovacevic, 2019. "Arbitrage conditions for electricity markets with production and storage," Computational Management Science, Springer, vol. 16(4), pages 671-696, October.
    4. Oliveira, F. & Nunes, P.M. & Blajberg, R. & Hamacher, S., 2016. "A framework for crude oil scheduling in an integrated terminal-refinery system under supply uncertainty," European Journal of Operational Research, Elsevier, vol. 252(2), pages 635-645.
    5. Staino, Alessandro & Russo, Emilio, 2015. "A moment-matching method to generate arbitrage-free scenarios," European Journal of Operational Research, Elsevier, vol. 246(2), pages 619-630.
    6. Anne Pedersen & Alex Weissensteiner & Rolf Poulsen, 2013. "Financial planning for young households," Annals of Operations Research, Springer, vol. 205(1), pages 55-76, May.
    7. Tiago P. Filomena & Miguel A. Lejeune, 2014. "Warm-Start Heuristic for Stochastic Portfolio Optimization with Fixed and Proportional Transaction Costs," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 308-329, April.
    8. Patrizia Beraldi & Maria Bruni, 2014. "A clustering approach for scenario tree reduction: an application to a stochastic programming portfolio optimization problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 934-949, October.
    9. Isha Chopra & Dharmaraja Selvamuthu, 2020. "Scenario generation in stochastic programming using principal component analysis based on moment-matching approach," OPSEARCH, Springer;Operational Research Society of India, vol. 57(1), pages 190-201, March.
    10. Consiglio, Andrea & Tumminello, Michele & Zenios, Stavros A., 2015. "Designing and pricing guarantee options in defined contribution pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 267-279.
    11. Geyer, Alois & Hanke, Michael & Weissensteiner, Alex, 2014. "No-Arbitrage ROM simulation," Journal of Economic Dynamics and Control, Elsevier, vol. 45(C), pages 66-79.
    12. Consiglio, Andrea & Carollo, Angelo & Zenios, Stavros A., 2014. "Generating Multi-factor Arbitrage-Free Scenario Trees with Global Optimization," Working Papers 13-35, University of Pennsylvania, Wharton School, Weiss Center.
    13. Hanke, Michael & Penev, Spiridon & Schief, Wolfgang & Weissensteiner, Alex, 2017. "Random orthogonal matrix simulation with exact means, covariances, and multivariate skewness," European Journal of Operational Research, Elsevier, vol. 263(2), pages 510-523.
    14. Owadally, Iqbal & Jang, Chul & Clare, Andrew, 2021. "Optimal investment for a retirement plan with deferred annuities allowing for inflation and labour income risk," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1132-1146.
    15. Rocha, Paula & Kuhn, Daniel, 2012. "Multistage stochastic portfolio optimisation in deregulated electricity markets using linear decision rules," European Journal of Operational Research, Elsevier, vol. 216(2), pages 397-408.
    16. Barro, Diana & Consigli, Giorgio & Varun, Vivek, 2022. "A stochastic programming model for dynamic portfolio management with financial derivatives," Journal of Banking & Finance, Elsevier, vol. 140(C).
    17. Geyer, Alois & Hanke, Michael & Weissensteiner, Alex, 2014. "No-arbitrage bounds for financial scenarios," European Journal of Operational Research, Elsevier, vol. 236(2), pages 657-663.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Staino, Alessandro & Russo, Emilio, 2015. "A moment-matching method to generate arbitrage-free scenarios," European Journal of Operational Research, Elsevier, vol. 246(2), pages 619-630.
    2. ManMohan S. Sodhi, 2005. "LP Modeling for Asset-Liability Management: A Survey of Choices and Simplifications," Operations Research, INFORMS, vol. 53(2), pages 181-196, April.
    3. Barro, Diana & Consigli, Giorgio & Varun, Vivek, 2022. "A stochastic programming model for dynamic portfolio management with financial derivatives," Journal of Banking & Finance, Elsevier, vol. 140(C).
    4. Weissensteiner, Alex, 2010. "Using the Black-Derman-Toy interest rate model for portfolio optimization," European Journal of Operational Research, Elsevier, vol. 202(1), pages 175-181, April.
    5. Robert Ferstl & Alexander Weissensteiner, 2011. "Backtesting Short-Term Treasury Management Strategies Based on Multi-Stage Stochastic Programming," Palgrave Macmillan Books, in: Gautam Mitra & Katharina Schwaiger (ed.), Asset and Liability Management Handbook, chapter 19, pages 469-494, Palgrave Macmillan.
    6. Sodhi, ManMohan S. & Tang, Christopher S., 2009. "Modeling supply-chain planning under demand uncertainty using stochastic programming: A survey motivated by asset-liability management," International Journal of Production Economics, Elsevier, vol. 121(2), pages 728-738, October.
    7. Robert Ferstl & Alex Weissensteiner, 2010. "Cash management using multi-stage stochastic programming," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 209-219.
    8. Zhao, Yonggan & Ziemba, William T., 2008. "Calculating risk neutral probabilities and optimal portfolio policies in a dynamic investment model with downside risk control," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1525-1540, March.
    9. de Lange, Petter E. & Fleten, Stein-Erik & Gaivoronski, Alexei A., 2004. "Modeling financial reinsurance in the casualty insurance business via stochastic programming," Journal of Economic Dynamics and Control, Elsevier, vol. 28(5), pages 991-1012, February.
    10. repec:dau:papers:123456789/5374 is not listed on IDEAS
    11. Geyer, Alois & Hanke, Michael & Weissensteiner, Alex, 2014. "No-arbitrage bounds for financial scenarios," European Journal of Operational Research, Elsevier, vol. 236(2), pages 657-663.
    12. Libo Yin & Liyan Han, 2013. "Options strategies for international portfolios with overall risk management via multi-stage stochastic programming," Annals of Operations Research, Springer, vol. 206(1), pages 557-576, July.
    13. Klaassen, Pieter, 1997. "Solving stochastic programming models for asset/liability management using iterative disaggregation," Serie Research Memoranda 0010, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    14. Pieter Klaassen, 1998. "Financial Asset-Pricing Theory and Stochastic Programming Models for Asset/Liability Management: A Synthesis," Management Science, INFORMS, vol. 44(1), pages 31-48, January.
    15. Gulpinar, Nalan & Rustem, Berc & Settergren, Reuben, 2004. "Simulation and optimization approaches to scenario tree generation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1291-1315, April.
    16. Clarence Simard & Bruno Rémillard, 2019. "Pricing European Options in a Discrete Time Model for the Limit Order Book," Methodology and Computing in Applied Probability, Springer, vol. 21(3), pages 985-1005, September.
    17. Michael C. Fu & Bingqing Li & Guozhen Li & Rongwen Wu, 2017. "Option Pricing for a Jump-Diffusion Model with General Discrete Jump-Size Distributions," Management Science, INFORMS, vol. 63(11), pages 3961-3977, November.
    18. Jacek Gondzio & Roy Kouwenberg, 2001. "High-Performance Computing for Asset-Liability Management," Operations Research, INFORMS, vol. 49(6), pages 879-891, December.
    19. Jean -Luc Prigent & Olivier Renault & Olivier Scaillet, 1999. "An Autoregressive Conditional Binomial Option Pricing Model," Working Papers 99-65, Center for Research in Economics and Statistics.
    20. Møller, T., 2002. "On Valuation and Risk Management at the Interface of Insurance and Finance," British Actuarial Journal, Cambridge University Press, vol. 8(4), pages 787-827, October.
    21. Sebastiano Vitali & Vittorio Moriggia, 2021. "Pension fund management with investment certificates and stochastic dominance," Annals of Operations Research, Springer, vol. 299(1), pages 273-292, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:206:y:2010:i:3:p:609-613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.