IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v57y2020i1d10.1007_s12597-019-00418-8.html
   My bibliography  Save this article

Scenario generation in stochastic programming using principal component analysis based on moment-matching approach

Author

Listed:
  • Isha Chopra

    (Indian Institute of Technology Delhi)

  • Dharmaraja Selvamuthu

    (Indian Institute of Technology Delhi)

Abstract

In optimization models based on stochastic programming, we often face the problem of representing expectations in proper form known as scenario generation. With advances in computational power, a number of methods starting from simple Monte-Carlo to dedicated approaches such as method of moment-matching and scenario reduction are being used for multistage scenario generation. Recently, various variations of moment-matching approach have been proposed with the aim to reduce computational time for better outputs. In this paper, we describe a methodology to speed up moment-matching based multistage scenario generation by using principal component analysis. Our proposal is to pre-process the data using dimensionality reduction approaches instead of using returns as variables for moment-matching problem directly. We also propose a hybrid multistage extension of heuristic based moment-matching algorithm and compare it with other variants of moment-matching algorithm. Computational results using non-normal and correlated returns show that the proposed approach provides better approximation of returns distribution in lesser time.

Suggested Citation

  • Isha Chopra & Dharmaraja Selvamuthu, 2020. "Scenario generation in stochastic programming using principal component analysis based on moment-matching approach," OPSEARCH, Springer;Operational Research Society of India, vol. 57(1), pages 190-201, March.
  • Handle: RePEc:spr:opsear:v:57:y:2020:i:1:d:10.1007_s12597-019-00418-8
    DOI: 10.1007/s12597-019-00418-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-019-00418-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-019-00418-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Allen Fleishman, 1978. "A method for simulating non-normal distributions," Psychometrika, Springer;The Psychometric Society, vol. 43(4), pages 521-532, December.
    2. Ronald Hochreiter & Georg Pflug, 2007. "Financial scenario generation for stochastic multi-stage decision processes as facility location problems," Annals of Operations Research, Springer, vol. 152(1), pages 257-272, July.
    3. Topaloglou, Nikolas & Vladimirou, Hercules & Zenios, Stavros A., 2002. "CVaR models with selective hedging for international asset allocation," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1535-1561, July.
    4. Kjetil Høyland & Stein W. Wallace, 2001. "Generating Scenario Trees for Multistage Decision Problems," Management Science, INFORMS, vol. 47(2), pages 295-307, February.
    5. John M. Mulvey & Hercules Vladimirou, 1992. "Stochastic Network Programming for Financial Planning Problems," Management Science, INFORMS, vol. 38(11), pages 1642-1664, November.
    6. Andrea Consiglio & Angelo Carollo & Stavros A. Zenios, 2016. "A parsimonious model for generating arbitrage-free scenario trees," Quantitative Finance, Taylor & Francis Journals, vol. 16(2), pages 201-212, February.
    7. Geyer, Alois & Hanke, Michael & Weissensteiner, Alex, 2010. "No-arbitrage conditions, scenario trees, and multi-asset financial optimization," European Journal of Operational Research, Elsevier, vol. 206(3), pages 609-613, November.
    8. Ceren Tuncer Şakar & Murat Köksalan, 2013. "A stochastic programming approach to multicriteria portfolio optimization," Journal of Global Optimization, Springer, vol. 57(2), pages 299-314, October.
    9. Holger Heitsch & Werner Römisch, 2009. "Scenario tree reduction for multistage stochastic programs," Computational Management Science, Springer, vol. 6(2), pages 117-133, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Consiglio, Andrea & Carollo, Angelo & Zenios, Stavros A., 2014. "Generating Multi-factor Arbitrage-Free Scenario Trees with Global Optimization," Working Papers 13-35, University of Pennsylvania, Wharton School, Weiss Center.
    2. Libo Yin & Liyan Han, 2013. "Options strategies for international portfolios with overall risk management via multi-stage stochastic programming," Annals of Operations Research, Springer, vol. 206(1), pages 557-576, July.
    3. Xiaoshi Guo & Sarah M. Ryan, 2021. "Reliability assessment of scenarios generated for stock index returns incorporating momentum," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4013-4031, July.
    4. Staino, Alessandro & Russo, Emilio, 2015. "A moment-matching method to generate arbitrage-free scenarios," European Journal of Operational Research, Elsevier, vol. 246(2), pages 619-630.
    5. Zhe Yan & Zhiping Chen & Giorgio Consigli & Jia Liu & Ming Jin, 2020. "A copula-based scenario tree generation algorithm for multiperiod portfolio selection problems," Annals of Operations Research, Springer, vol. 292(2), pages 849-881, September.
    6. Owadally, Iqbal & Jang, Chul & Clare, Andrew, 2021. "Optimal investment for a retirement plan with deferred annuities allowing for inflation and labour income risk," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1132-1146.
    7. Ponomareva, K. & Roman, D. & Date, P., 2015. "An algorithm for moment-matching scenario generation with application to financial portfolio optimisation," European Journal of Operational Research, Elsevier, vol. 240(3), pages 678-687.
    8. Barro, Diana & Consigli, Giorgio & Varun, Vivek, 2022. "A stochastic programming model for dynamic portfolio management with financial derivatives," Journal of Banking & Finance, Elsevier, vol. 140(C).
    9. Owadally, Iqbal & Jang, Chul & Clare, Andrew, 2021. "Optimal investment for a retirement plan with deferred annuities," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 51-62.
    10. Gulpinar, Nalan & Rustem, Berc & Settergren, Reuben, 2004. "Simulation and optimization approaches to scenario tree generation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1291-1315, April.
    11. Wu, Dexiang & Wu, Desheng Dash, 2020. "A decision support approach for two-stage multi-objective index tracking using improved lagrangian decomposition," Omega, Elsevier, vol. 91(C).
    12. Murat Köksalan & Ceren Tuncer Şakar, 2016. "An interactive approach to stochastic programming-based portfolio optimization," Annals of Operations Research, Springer, vol. 245(1), pages 47-66, October.
    13. D. Kuhn, 2009. "Convergent Bounds for Stochastic Programs with Expected Value Constraints," Journal of Optimization Theory and Applications, Springer, vol. 141(3), pages 597-618, June.
    14. Löhndorf, Nils, 2016. "An empirical analysis of scenario generation methods for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 255(1), pages 121-132.
    15. Shushang Zhu & Masao Fukushima, 2009. "Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management," Operations Research, INFORMS, vol. 57(5), pages 1155-1168, October.
    16. Topaloglou, Nikolas & Vladimirou, Hercules & Zenios, Stavros A., 2020. "Integrated dynamic models for hedging international portfolio risks," European Journal of Operational Research, Elsevier, vol. 285(1), pages 48-65.
    17. Fang, Yong & Chen, Lihua & Fukushima, Masao, 2008. "A mixed R&D projects and securities portfolio selection model," European Journal of Operational Research, Elsevier, vol. 185(2), pages 700-715, March.
    18. Georg Pflug & Alois Pichler, 2015. "Dynamic generation of scenario trees," Computational Optimization and Applications, Springer, vol. 62(3), pages 641-668, December.
    19. Konicz, Agnieszka Karolina & Mulvey, John M., 2015. "Optimal savings management for individuals with defined contribution pension plans," European Journal of Operational Research, Elsevier, vol. 243(1), pages 233-247.
    20. Gaivoronski, A & Stella, F, 2000. "Nonstationary Optimization Approach for Finding Universal Portfolios," MPRA Paper 21913, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:57:y:2020:i:1:d:10.1007_s12597-019-00418-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.